
����������
����������������

A Principled Approach to
Consolidating a Data Graph

GraphQL at Enterprise Scale
A Principled Approach to Consolidating a Data Graph

Jeff Hampton

Michael Watson

Mandi Wise

GraphQL at Enterprise Scale

Copyright © 2020 Apollo Graph, Inc.

Published by Apollo Graph, Inc.

https://www.apollographql.com/

All rights reserved. No part of this bookmay be reproduced in any form on by

an electronic or mechanical means, including information storage and retrieval

systems, without permission in writing from the publisher. Youmay copy and

use this document for your internal, reference purposes. Youmaymodify this

document for your internal, reference purposes

This document is provided “as-is”. Information and views expressed in this

document may change without notice. While the advice and information in this

document is believed to be true and accurate at the date of publication, the

publisher and the authors assume no legal responsibility for errors or omissions,

or for damages resulting from the use of the information contained herein.

Revision History for the First Edition

2020-09-11: First Release

2020-10-27: Second Release

2020-12-10: Third Release

2021-04-26: Fourth Release

https://www.apollographql.com/

Contents

The Team v

Preface vi

Who Should Read this Guide . vi

What You’ll Learn from this Guide vii

How to Contact Us . vii

Moving Toward GraphQL Consolidation 1

Why Consolidate Your Data Graph? 1

What Does a Consolidated Data Graph Look Like? 8

When to Consolidate Your Data Graph 9

Summary . 14

Graph Champions in the Enterprise 15

The Graph Champion and Graph Administration 15

Delivering Organizational Excellence as a Graph Champion 19

Education To Support Organizational Change 21

Summary . 21

Consolidated Architectures with Federation 22

A Better Way to Scale Distributed GraphQL Architectures 22

Subgraphs and the Gateway . 25

Connecting the Data Graph with Entities 27

Defining Shared Types and Custom Directives 31

Managed Federation . 33

Summary . 33

Federated Schema Design Best Practices 35

Best Practice #1: Design Schemas in a Demand-Oriented, Abstract Way 36

Best Practice #2: Prioritize Schema Expressiveness 39

Best Practice #3: Make Intentional Choices About Nullability 42

Best Practice #4: Use Abstract Type Judiciously 44

iii

iv Contents

Best Practice #5: Leverage SDL and Tooling to Manage Deprecations . . 47

Best Practice #6: Handle Errors in a Client-Friendly Way 48

Best Practice #7: Manage Cross-Cutting Concerns Carefully 53

Summary . 54

Graph Administration in the Enterprise 56

Workflows . 57

Tooling for Data Graph Contributors 59

Tooling for Data Graph Consumers 62

Observability . 63

Governance . 66

Summary . 70

Appendix A: Federation Case Studies 71

Appendix B: GraphQL and Apollo Learning Resources 73

The Team

This guide is the culmination of thousands of hours Apollo’s employees have

spent working with and learning from our customers over the years.

These are the members of the Apollo teamwho have made contributions to the

content in this guide:

• Jeff Hampton – Writing

• Michael Watson – Writing

• Mandi Wise – Writing/Editing

v

Preface

The data graph has quickly established itself as an essential layer of the mod-

ern application development stack. In tandem, GraphQL has become the de

facto technology for managing this new layer with its enticing promise to bring

together all of an organization’s app data and services coherently in one place.

And thanks to the wellspring of experimentation and innovation with GraphQL

over the years, it has proven itself a mature and capable technology that’s ready

for scalability.

GraphQLmakes its way into an enterprise’s tech stack through a variety of

avenues, for instance, a single team eager to leverage its client-driven approach

to data fetching. However, as its adoption spreads realizing GraphQL’s promise

at scale requires coordination and consolidation of these efforts across teams.

At Apollo, we’ve had the opportunity to work with countless developers in a

wide range of enterprises over the years. Through that work, we’ve learned

that a unified, federated data graph is at the heart of any successful GraphQL

consolidation project. We first shared some of these insights in Principled

GraphQL where we outlined best practices that organizations can follow to

create, maintain, and operate a data graph as effectively as possible. In this

guide, we’ll provide a detailed roadmap for putting these principles into action

at the enterprise level.

Who Should Read this Guide

This guide is for engineering leaders. If your enterprise is currently using

GraphQL, then you have undoubtedly experienced challenges related to main-

taining amonolithic data graph or wrangling multiple smaller graphs. Consol-

idating GraphQL in your organization can help reduce friction points between

teams, enhance developer experience, improve governance of your graph, and

even provide better observability of how your data is consumed.

vi

https://principledgraphql.com/
https://principledgraphql.com/

What You’ll Learn from this Guide vii

This guide is for business leaders. Consolidating your data graph isn’t just

about the architecture of your tech stack. It’s about an organizational transfor-

mation that will harness the power of graphs to unlock platform value. A unified

data graph increasingly lives at the center of value delivery in an enterprise and

the strategies and tactics presented in this guide provide a pathway to realizing

the potential of your data-graph-as-a-product.

This guide is for developers and architects. Whether you’re a developer on a

client team or actively maintaining a GraphQL server in production now, the

concepts outlined in this guide will give you a clearer understanding of how

your work can align to your organization’s broader GraphQL strategy and even

become a “Graph Champion” on your team.

What You’ll Learn from this Guide

This guide is the culmination of what we’ve learned after spending thousands

of hours working with enterprises at Apollo. Based on those experiences, we’ll

cover both the high-level considerations and the practical skills required to

successfully consolidate a data graph across an enterprise.

We’ll first present a case for why GraphQL consolidation is important in an

enterprise and provide a framework for assessing when an enterprise should

undertake a consolidation project. Subsequently, we’ll move into the specifics of

successful enterprise-level graphmanagement and discuss the essential role of

the graph champion in a consolidated GraphQL architecture.

Ultimately, this guide has been written for you by Apollo to help guide you on

your journey toward effectively scaling your data graph across your enterprise.

It’s intended to be a living document and the solutions teamwill add additional

content to it on an ongoing basis in future releases.

You can check for update and download the latest version of the guide here:

http://apollographql.com/guide

How to Contact Us

We’d like to hear from you if you have questions about this guide or have a

unique perspective you’d like share about using GraphQL your organization.

Email us at solutions@apollographql.com to reach out at any time with

your comments or if you require any assistance implementing GraphQL in an

enterprise environment.

http://apollographql.com/guide
mailto:solutions@apollographql.com

Moving Toward GraphQL

Consolidation

By Jeff Hampton and Michael Watson

This chapter will introduce you to the notion of creating a unified, federated

data graph in an effort to leverage the benefits of a consolidated GraphQL

architecture. Based on our experience working with a variety of enterprises at

Apollo, we’ll provide a rationale for consolidation as well as a framework for

determining whether your organization is ready to consolidate its data graph.

Why Consolidate Your Data Graph?

The GraphQL community and ecosystem of related software have grown at

breathtaking speed. During the intervening years since its public release in 2015,

this technology has quickly matured to a point where it can be used in nearly any

infrastructure.

Companies such as Airbnb, GitHub, and the New York Times have famously

already adopted GraphQL in their tech stacks. With its strong type system

and declarative approach to data-fetching, it’s easy to see why teams across

enterprises have been eager to embrace the many benefits of GraphQL. At

Apollo, we see firsthand the level of enthusiasm organizations have for GraphQL

with over 1.5 million downloads of the Apollo Client packages every week, along

with hundreds of thousands more weekly downloads of the Apollo Server and

Apollo Federation packages.

Scanning your organization youmay quickly realize that multiple teams are

already using GraphQL in production today. Having some top-level insight into

how GraphQL is used across your enterprise is the first step toward understand-

ing whether those efforts can and should be consolidated.

1

2 Moving Toward GraphQL Consolidation

How GraphQL Gains Traction in an Enterprise

When developers begin to experiment with GraphQL, they almost invariably first

encounter a foundational architecture where a client application queries a single

GraphQL server. In turn, the server distributes those requests to backing data

sources and returns the data in the client’s desired shape:

As different teams within an enterprise move toward officially adopting GraphQL,

the complexion of their isolated implementations will usually be adapted from

this basic architecture, but may vary considerably from from team to team. At

Apollo, we’ve typically seen that those initial, unconsolidated efforts resemble

one of the following four patterns.

Pattern 1: Client-Only GraphQL

Client teams that are enthusiastic to reap the benefits of GraphQL’s client-centric

data-fetching capabilities may charge ahead and implement a GraphQL API

within the context of their application. With such implementations, these teams

are oftenmotivated to adopt GraphQL for the convenience of wrapping existing

APIs with a single GraphQL API endpoint.

To illustrate this approach, a client-only GraphQL architecture may look like this:

Pattern 2: Backend for Frontend (BFF)

GraphQLmay also be used as a solution for teams implementing the Backend

for Frontend (BFF) pattern. BFF seeks to solve the problem of requiring different

Why Consolidate Your Data Graph? 3

clients (for example, web and iOS) to interact with a monolithic, general-purpose

API. Alternatively, BFFs can save client applications frommaking requests to

multiple backend services to obtain all of the data required to render a particular

user interface view.

As a solution, BFFs add a new layer where each client has a dedicated BFF

service that directly receives the client’s requests and is tightly coupled to that

user experience. For teams creating BFF services, GraphQL can be a natural fit

for building out this intermediary, client-focused layer and adopting this pattern

can be an important first step toward consolidating a data graph.

In practice, the BFF pattern with GraphQLmay look like this:

Pattern 3: The Monolith

Themonolith pattern can take on two forms in an enterprise. In its first form,

teamsmay share one codebase for a GraphQL server that is used by one or more

clients. In some cases, client codemay even live in the same repository as the

GraphQL server. However the code is organized, the ownership of this graph is

shared by the various developers who ultimately consume the graph’s data.

In its alternative form, a single teammay be designated to own a graph that

is accessed bymultiple client teams. This teamwould typically define a set of

standards for the graph and champion its adoption throughout the organization.

As with GraphQL-based BFFs, maintaining a single, monolithic GraphQL API

can help set the stage for effective consolidation of an organization’s GraphQL-

focused efforts.

For either monolithic scenario, its high-level architecture looks like this:

4 Moving Toward GraphQL Consolidation

Pattens 4: Multiple Overlapping Graphs

Enterprise teamsmay also independently develop their own service-specific

GraphQL APIs in tandem. With this approach, teamsmay delineate each service

API based on types or use cases, but there will often be overlap between the

graphs due to the interconnected nature of data.

Such an architecture may look like this:

Where Do These Patterns Break Down?

After taking stock of who uses GraphQL and how in your enterprise, the patterns

the various teams have implemented can provide insight into what kinds of

problems they initially endeavored to solve. Similarly, these choices can help il-

luminate what pain points the teams currently face with respect to how GraphQL

is used in their tech stacks.

Why Consolidate Your Data Graph? 5

Client-Only GraphQL

Teams that opt for client-only GraphQL approaches are motivated to improve

their client development experience by layering GraphQL on top of the REST

endpoints or other legacy APIs they have to work with. And while improved de-

veloper experience is a win, beneath this abstraction the client application will

still incur performance costs as it maintains responsibility for making multiple

requests to various services to gather all of the data required to render a view.

BFFs

Like client-only approaches, teams that use GraphQL with BFFs enjoy the advan-

tage of improved developer experience by way of a consumer-friendly GraphQL

API, but they also manage to overcome the performance issues incurred by

client-only approaches. BFFs accomplish this by providing a unified interface for

a client application to send its requests while also handling the heavy lifting of

querying multiple backend services on behalf of the client.

However, there is an inherent tradeoff in building andmaintaining BFFs. When

every client team is empowered to create a BFF to suit their needs, there will be

inevitable duplication of effort across those teams. However, where BFFs are

shared between seemingly similar clients in an effort to reduce duplication, then

the GraphQL schema contained within can balloon in size and become confusing

due to the lack of clear ownership.

Monoliths

The pains that emerge from shared BFFs are only sharpened with monolithic

GraphQL server implementations that have shared ownership. Portions of a

graphmay be well-designed to suit the needs of certain client teams only, while

other clients must find workarounds or create overlapping types for their own

use. Correspondingly, standardization becomes an issue because the shape of

the graph evolves myopically on a client-by-client or a feature-by-feature basis.

Even in scenarios where a dedicated server teammaintains ownership of the

graph challenges quickly arise whenmore than one graph definition is required

for a single product in order to support the needs of multiple clients. A server

teammay also find itself burdened with the task of building and maintaining the

necessary tooling to evolve the schema over time tomeet new product needs

without breaking compatibility for any clients that are actively consuming data

from the graph.

6 Moving Toward GraphQL Consolidation

Multiple Overlapping Graphs

Finally, whenmultiple graphs exist within an enterprise it often indicates that

the organization was an early adopter of GraphQL, moved to production quickly,

and investedmore in GraphQL as time went on. As one potential outcome of

this investment, an attempt to expand amonolithic GraphQL API across teams

may have ultimately resulted in the graph being split into multiple pieces to

accommodate the conflicting needs of each team. The inevitable result of this

approach is a duplication of effort to manage these two overlapping graphs

and a subpar experience for client applications that no longer have a unified

interface fromwhich to request data.

Another possible reason an enterprise may havemultiple overlapping graphs

stems from a deliberate choice for teams tomanage their GraphQL APIs inde-

pendently but assemble them into a single gateway API using schema stitching.

While schema stitching can simplify API usage from a client’s perspective, the

gateway API requires a considerable amount of imperative code to implement.

What’s more, it may not always be clear-cut where to split types across services

and it also necessitates the designation of an API gatekeeper who will manage

the gateway and how the underlying schemas are composed into it.

Inconsistency: The Common Shortcoming

All of the previous patterns—whether client-only GraphQL, BFFs, monoliths,

or multiple overlapping graphs—also have a shared shortcoming in that their

implementations result in a lack of consistency. Amore productive way for-

ward for teams searching for better efficiency and understandability from their

GraphQL-based architectures will have two requirements:

1. Consumers should be able to expect consistency in how they fetch

data. A single endpoint should be exposed to client applications and,

regardless of what underlying services supply the data, clients should be

able to use consistent workflows to consume the data.

2. Providers should consistently represent common entities in a

consumption-friendly way. Teamsmay be empowered to use any

underlying technology at the data layer, but access to this data should

be consolidated through the GraphQL API and exposed in a way that

compliments client use cases. Additionally, teams should be able to

delineate service boundaries based on separation of concerns (as opposed

to separation by types) without interfering with each other.

Why Consolidate Your Data Graph? 7

How Consolidation Addresses These Challenges

Consolidating your data graph is the key to moving beyond these architectural

pitfalls, achieving consistency, and realizing the full potential of GraphQL in an

enterprise.

At a fundamental level, moving toward graph consolidation requires that your

organization has one unified graph instead of multiple graphs created and

managed by each team. However, the implementation of that unified graph

should be federated across multiple teams. These are the first two “integrity

principles” outlined in Principled GraphQL.

Specifically, moving toward this kind of consolidated data graph allows teams

across the enterprise to:

• Scale GraphQL APIs effectively. Implementing uniform practices al-

low the benefits of GraphQL to be realized at scale in an organization.

For example, teams will have a better understanding of the workflows

and policies that they must follow tomake contributions to the graph.

Similarly, they will also benefit from improved standardization when

consuming data from the organization’s graph.

• Obtain a unified view of your data. Your graph is a representation of the

data of your product. Having a consolidated view of this data will provide

you with fresh perspective into how that data is currently used, while also

inspiring new creative uses for it in the future. Additionally, it will help you

to enforce a measure of consistency on how client applications consume

that data.

• Leverage existing infrastructure. GraphQL consolidation allows teams

to reuse existing infrastructure in an organization and help eliminate

duplicated efforts where teams interact with data. Consolidation also

allows you to take a holistic view of the practices and tooling developed by

each team that touches your data graph and leverages the best of those

individual efforts across the enterprise as a whole.

• Ship code faster. Organizations adopt GraphQL to build and iterate on

their products faster. As GraphQL gains traction throughout an enterprise,

these benefits may be partially offset by time spent developing tooling to

help support that growth. Consolidation helps reclaim that lost momen-

tum by providing a clearly defined set of practices for teams follow when

contributing to or consuming data from the graph.

https://principledgraphql.com/

8 Moving Toward GraphQL Consolidation

What Does a Consolidated Data Graph Look Like?

In practice, a consolidated, federation-driven GraphQL architecture consists of:

• A collection of subgraph services that each define a distinct GraphQL

schema

• A gateway that composes the distinct schemas into a federated data

graph and executes queries across the services in the graph

Apollo Server provides open source libraries that allow it to act both as a

subgraph and as a gateway, but these components can be implemented

in any language and framework. Specifically, Apollo Server supports

federation via two open-source extension libraries:

• @apollo/federation provides primitives that your subgraphs use

to make their individual GraphQL schemas composable

• @apollo/gateway enables you to set up an instance of Apollo

Server as a gateway that distributes incoming GraphQL operations

across one or more subgraphs

We will cover consolidated GraphQL architectures using Apollo Federation

and Apollo Gateway in-depth in Chapter 3.

Unlike other distributed GraphQL architectures such as schema stitching, fed-

eration uses a declarative programmingmodel that enables each subgraph to

implement only the part of your data graph that for which it’s responsible. With

this approach, your organization can represent an enterprise-scale data graph as

a collection of separately maintained GraphQL services. What’s more, schema

composition in federation is based on GraphQL primitives, unlike the imperative,

implementation-specific approach required by schema-stitching.

https://www.npmjs.com/package/@apollo/federation
https://www.npmjs.com/package/@apollo/gateway

When to Consolidate Your Data Graph 9

Core Principles of Federation

A GraphQL architecture that has been consolidated with federation will adhere

to these two core principles:

Incremental Adoption

If you currently use amonolithic GraphQL server, then you can break its func-

tionality out one service at a time. If you currently use a different architecture

like schema stitching, then you can add federation support to your existing

subgraphs one at a time. In both of these cases, all of your clients will continue

to work throughout your incremental migration. In fact, clients have no way to

distinguish between these different data graph implementations.

Separation of Concerns

Federation encourages a design principle called separation of concerns. This

enables different teams to work on different products and features within a

single data graph, without interfering with each other.

By contrast, traditional approaches to developing distributed GraphQL architec-

tures often lead to type-based separationwhen splitting that schema across

multiple services. While it may initially seem straightforward to divide a schema

by type, issues quickly arise because features (or concerns) managed by one

service often span across multiple types that are located in other services.

By instead referencing and extending types across services, concern-based

separation offers the best of both worlds: an implementation that keeps all

the code for a given feature in a single service and separated from unrelated

concerns, and a product-centric schema with rich types that reflects the natural

way an application developer would want to consume the graph.

When to Consolidate Your Data Graph

At this point, youmay have a sense that your enterprise could benefit from

consolidating its data graph, so the next important question to answer iswhen

should it move toward consolidation?

GraphQL, from a pure engineering standpoint, is onemeans to achieve a com-

mon set of business goals: horizontal scalability, rapid product iteration, and

increased service delivery capacity, and reduced time-to-market. When placed

in the hands of architects and engineering leaders, common questions emerge

about how GraphQL can and will change the organization.

10 Moving Toward GraphQL Consolidation

At a fundamental level, a conversation about consolidation can begin as soon

as it seems logical for multiple teams to manage different parts of the data

graph. While each organization and line of business may have unique consider-

ations in answering the question of when and how to consolidate, Apollo has

recognized patterns of success and failure whenmaking this organizational

shift. Additionally, any good architect should spend sufficient time laying the

groundwork for future change. While it might be tempting to federate “early

and often,” consolidating through federation requires meeting a threshold and

burden of evidence that the enterprise will benefit from this approach.

In the spirit of Principled GraphQL, we present a framework for making this

decision, illuminating the potential gaps in an organization’s success plan, and

ensuring constant success throughout the organization’s GraphQL evolution to a

federated implementation.

With a process in place to answer this question and evaluate the capability of

success, we’ll explore some common scenarios taken from real-world projects

here at Apollo. The real value of GraphQL lies in the hands of those tasked with

its implementation, and organizations of all sizes and shapes face the same

human-centric challenges with more or less success, and with more or less

friction during the process.

To frame this decision-making process, we should first examine the inherent

strengths of implementing or extending a federated data graph.

The Strengths of a Federated Graph Implementation

Just as network performance tuning is bound by the speed-of-light, the organiza-

tional optimizations offered by a federated GraphQL implementation is bound

by some real-world constraints:

• Consensus: A collective understanding of data graph entities, tools, and

quality

• Responsibility: Clear delineation of data graph “ownership,” education,

and support available to teams

• Delivery: Speed of infrastructure change, velocity of product delivery

• Performance: Impact to consumer-facing operation resolution for dis-

tributed operations

At its heart, a federated GraphQL implementation is an optimization toward

separation of concerns (be they performance, team structure, delivery cadence,

line-of-business alignment, or some combination of these) in exchange for a

distributed system. The shift towardmicroservices also involved this tradeoff,

but without a demand-driven, product-delivery orientation.

https://principledgraphql.com/

When to Consolidate Your Data Graph 11

When deciding to break a monolithic graph into a federated one or when expand-

ing a federated graph by adding new services and teams, an architect should

have a plan for addressing the above four areas of concern. The decision ma-

trix below is annotated with each of these concerns and provides guidance in

resolving any gaps in measuring, understanding, and addressing these concerns.

Decision Framework Matrix

Whether you’re adding a new service, splitting an existing service, or choosing to

implement a federated graph for the first time, an architect’s most important

responsibility is understanding the motivation for the change. In Apollo’s

experience, a lack of clear and reliable measurements makes it harder to decide

where and when to separate the concerns among graph services.

At a strategic level, GraphQL adoption and evolution to a federated implemen-

tation can bemeasured reliably using a simple matrix. By answering these

questions periodically, technology leaders will have a continuous evaluation of

when, and how, their GraphQL implementation should proceed.

Our recommendation is to keep this exercise simple and stable. Practition-

ers should use the Apollo Consolidation Decision Matrix below as a regular

artifact to aid in a formal decision-making process.

If the answers to all of these questions are “yes,” then you should proceed to

laying out a clear path to a successful implementation.

If the answers to any these questions are unclear or “no,” then leaders should

take caution in evolving their GraphQL implementation to federation:

• Use each “no” to identify andmonitor metrics and indicators that change

is necessary

• Approach each “no” with a relentless desire to connect with the team(s)

doing the work and understand how this becomes a “yes”

Apollo Consolidation Decision Matrix

Concern Criterion Yes No Remediation/Guidance

Consensus Are multiple teams

contributing to your graph?

If this is an initial federated

implementation, identify

your ”Graph Champions”

(see the next chapter) and

establish education, review,

and governance processes.

12 Moving Toward GraphQL Consolidation

Concern Criterion Yes No Remediation/Guidance

Responsibility Are contributions to your

graph by multiple teams

regularly causing conflicts

with one another?

If teams are collaborating

well together, consider the

potential switching cost of

diving teams or adding new

teams.

Delivery Is there a measurable

slowdown or downward

trend in GraphQL service

change delivery?

If there isn’t a measurable,

negative impact to product

or service delivery, consider

the additional complexity

and support for this change.

Delivery Is there a concrete security,

performance, or product

development need to deliver

portions of your existing

schema by different teams or

different services?

If consumers or internal

stakeholders are not

currently affected, consider

revisiting the driving factors

for this change.

Consensus Is there a single source of

governance for your GraphQL

schema within the

organization?

An initial Federated

implementation, or an early

expansion of Federation, are

good opportunities to

create support systems for

education,

consensus-building,

governance, and quality

control.

Consensus Does your GraphQL

governance process have a

reasonably robust education

component to onboard new

teams?

Apollo has found that a

robust education plan is a

leading indicator of

constant improvement and

success.

Delivery Is your existing GraphQL

schema demand-oriented

and driven by concrete

product needs?

Changes driven by

data-modelling or internal

architectural requirements

may not have an ROI when

weighed against the costs of

infrastructure and

organizational change.

When to Consolidate Your Data Graph 13

Concern Criterion Yes No Remediation/Guidance

Responsibility Do you have a strong

GraphQL change

management, observability,

and discoverability story, and

do providers and consumers

know where to go for these

tools?

Graph administration and

tooling such as Apollo

Studio are key elements in a

successful,

organization-wide GraphQL

initiative.

Consensus Is your existing GraphQL

schema internally consistent,

and are your GraphQL

schema design patterns

well-understood by providers

and consumers?

Dividing responsibility or

adding new schema to your

Graph without strong

governance may exacerbate

existing friction or

product/service delivery

challenges.

Performance Can you be reasonably sure

that the cost of additional

latency, complexity, and

infrastructure management

will have a positive ROI when

bound by business timelines

and objectives?

Ensure that the

requirements for separating

concerns have a

performance and

optimization budget.

Ensuring Constant Improvement and Success

The outcomes of a GraphQL consolidation project should bemeasured against

the original, documented drivers for the transition to a federated data graph.

Aside from these measurements, certain actions and approaches must be under-

taken to ensure that ongoing changes to the consolidated GraphQL architecture

will be a success from a human and technology perspective.

For instance, teamsmay need to adopt new processes and practices to evolve

shared types collaboratively and in such a way that provides consistency for

current consumers of the data graph. Additionally, while an incremental cost,

the infrastructure impact should be explored and verified against reference

architectures during the project.

Because GraphQL can be an organizationally transformative technology, care

should be taken to involve all stakeholders during the planning and implementa-

tion process of a federated data graph. As a result, education plays a key role in

the success of federated implementations, which we will begin to explore in the

next chapter.

14 Moving Toward GraphQL Consolidation

Summary

Consolidating GraphQL APIs across the enterprise can help bring a much-needed

measure of consistency to how this technology is implemented for both data

graph contributors and consumers alike. Moving toward a unified, federated

approach allows an organization to scale its GraphQL APIs, obtain new perspec-

tives on its data graph, reuse infrastructure, and enable teams to ship code

faster. When the time is right to move toward a consolidated data graph, enforc-

ing proper separation of concerns in the underlying services will allow teams

to continue to rapidly iterate while adhering to the constraints imposed by the

federated implementation.

In the next chapter, we’ll explore the topic of graph ownership within an organi-

zation as well as how to plan for the successful roll-out of a consolidated graph

architecture with federation.

Graph Champions in the

Enterprise

By Jeff Hampton

As we explored in the previous chapter, GraphQL adoption patterns can vary

considerably within large organizations. In some instances, GraphQL is identified

by architects and applied as an incremental pattern of API consolidation or

mediation. Alternatively, GraphQL spreads organically among product teams

looking to accelerate their delivery with the safety and support afforded by the

GraphQL specification and community. Regardless of its inception, GraphQL

adoption naturally grows beyond a single team’s ability to reason about what is

being developed in an enterprise.

Apollo’s experience has revealed a consistent need for a specific skill set around

GraphQL in an enterprise. To put it plainly—regardless of the investment

model—GraphQL adoption will eventually generate the need for consolida-

tion once two or more teams invest in a data graph. The enterprise’s Graph

Champions will be instrumental to this consolidation effort.

In this chapter, we’ll further explore the concept of the data-graph-as-a-

product, identify its customers, and explore the skills and products necessary to

consolidate GraphQL within an enterprise. We’ll then scope the responsibilities

of Graph Champions and their role in organizational excellence and we’ll explore

each component of graph championship and data graph administration with key

deliverables and approaches to address consolidation challenges.

The Graph Champion and Graph Administration

The size and shape of the Graph Champion role may be embodied in a few teams

members, an architectural review board, or simply a cross-functional guild.

Regardless of its shape, the Graph Champion works to ensure that contributors

and consumers of an organization’s graph get what they need from it.

15

16 Graph Champions in the Enterprise

In short, the Graph Champion views an organization’s data graph as a product

with multiple customers. From that perspective, Graph Champions under-

stand that:

• Time-to-market is crucial to customer success

• Product quality is necessary for customer trust

• Educating customers is a key factor in making a product useful

• The data graphmust have an ecosystem of tooling that serves all cus-

tomers well

• The ergonomics exposed to graph consumers and conntributors must be

aligned with industry standards

Four Key Responsibilities of the Graph Champion

At Apollo, we have commonly seen that the core responsibilities of Graph Cham-

pions in an enterprise are divided into four overarching areas:

Governance

Broad initiatives are best served by a teamwhose focus and value is well-

understood across business units and organizational boundaries:

• Graph Champions are recognized as a source of truth for GraphQL within

the organization

• With an increased altitude, Graph Champions can be entrusted with the

security of the graph and its access

• Teams can rely on Graph Champions to bring clarity to cross-cutting

concerns (for example “how do I reference an end-user?” or “how do

we handle media, currency, and internationalization consistently in our

products?”)

• Establish andmaintain deprecation and long-term-support (LTS) sched-

ules based on end user and consumer demand for graph features

Health

Graph Champions support healthy, consolidated, and federated data graphs that

have these key characteristics:

• Healthy adoption of a single, federated graph requires rigor in maintain-

ing a cohesive, easy-to-consume graph surface

• Service discovery and product development depend on consistent

document documentation, style, and availability

• Consumers can serve end users quickly because the federated graph has

consistent naming and logical organization

The Graph Champion and Graph Administration 17

• Do not contain highly-duplicative or deceptively-similar portions of the

graph

• Avoid confusion and friction for consumers

Advocate

Graph Champions serve the interests of multiple customers and stakeholders

through support and service by:

• Defending the role of the data graph to business leadership

• Providing education to new customers in the languages and parlance of

the teams to which they belong

• Onboarding and facilitating discussions, RFCs, and architectural reviews

Equip

Successful “digital transformation“ strategies often under-prioritize engineering

ergonomics and tooling. A successful Graph Champion equips each customer of

the data graph according to their needs by:

• Providing andmanage tooling for other teams to use and evolve the graph

• Establish common, polyglot patterns and sound practices for effective

GraphQL use

• Supporting delivery systems, including integration, testing, artifact reg-

istries, and IDE tooling

Supporting Customers of the Data Graph

A new product-centric view of the data graph demands a clear understanding of

the graph’s customers. Before moving forward, it’s important to recognize that

and a customer-centric view of API service delivery is distinctly different from a

stakeholder-centric view of an ongoing project. While stakeholders may bring

concerns to a project’s lifecycle, customers bring feedback about howwell the

product supports them in achieving their goals.

To those ends, we have identified four unique customer personas that data

graphs must support, each with different usage requirements and feedback

perspectives to consider:

1. End User

• Uses products built by the organization’s consumers

• May use public APIs, cross-platform application experiences, or

integration platforms

2. Consumer

• Explores an organization’s graph

18 Graph Champions in the Enterprise

• Builds products for End Users using existing and new graph features

• Are concerned with performance, new product development

3. Contributor

• Resolve graph data to underlying systems

• Fulfill product-driven requests from Consumers

• Collaborate with Consumers through tooling, education

4. Sponsor

• Enable CI/CD and provide delivery platform

• Maintain operational excellence

• “Last Mile” to the End User

With these personas in mind, we can further contextualize the key responsibili-

ties of Graph Champions from the previous section to gain a holistic view of their

role in supporting a consolidated data graph in an organization:

Managing Consolidation Challenges

As organizations work toward consolidating their GraphQL service delivery

through federation, a common set of challenges often arises as teams align

to new practices for managing and contributing to a unified data graph. As

an extension of supporting graph customers, Graph Champions can help an

enterprise strategically address the following challenges:

Delivering Organizational Excellence as a Graph Champion 19

Challenge #1: Schema Evolution

GraphQL increases developer velocity and product delivery. Graph Champions

support this ongoing product evolution through education and governance so

that the graph can continue to safely and effectively serve its customers.

Challenge #2: Composition

Different teams and business priorities frequently create blurred boundaries of

domain, data, and service ownership. Graph Champions can facilitate domain-

based conflict resolution of overlapping types, fields, and cross-cutting concerns

in support of the broader health of the composed data graph.

Challenge #3: Service Delivery

Organizations delivering a data graph as a product must reason about services

and schemas with different rates of change and different delivery timelines for

end-user products. Graph Champions can help provide the necessary insight

to configure service boundaries that allow one team tomaintain and evolve its

portion of the graph without compromising or otherwise conflicting with the

work of other teams.

Challenge #4: Tooling

GraphQL devops has matured. Service delivery demands observability, perfor-

mance tuning, and client/operation identification. Graph Champions act as

advocates for proper developer and operational ergonomics to support teams in

effective service delivery.

Delivering Organizational Excellence as a Graph

Champion

There are some higher-level questions that can guide the mission and day-to-

day and week-to-week work of the GraphQL Champions in an enterprise. These

questions fulfill customer needs and align to key responsibilities of the role:

Responsibility Question Approaches

Governance As teams contribute to the graph,

what is their obligation to their

downstream consumers?

Schema versioning, deprecation

schedules

20 Graph Champions in the Enterprise

Responsibility Question Approaches

Governance Who sets which policies with

respect to SLA, SLO, LTS?

RFCs, DevOps discussions,

platform policies

Governance Is deprecation required

per-service?

LTS commitments, business

product alignment

Governance Can breaking changes be forced to

consumers? Under what

circumstances, and on whose

accountability?

LTS commitments, business

product alignment

Governance Is support segmented per-platform,

in-aggregate, or driven by

longest-client-support?

LTS commitments, business

product alignment

Advocacy How do consumers stay informed

of changes?

Center of excellence portal,

internal communications

Advocacy How do you ensure clear Graph

Policies and usage?

Defined standards, RFCs,

templates, and educational

programs

Advocacy How is a new team onboarded

successfully?

Center of excellence portal,

education

Advocacy How do wemaintain consistency

for cross-cutting concerns?

Prioritize RFC and Champion

participation, governed consensus

Equip Which languages, services, and

platforms will be supported?

Equip How do we create scalable,

high-performing teams?

IDE integrations, dev-time tooling,

test automation

Equip How do we automate and enable

change in our product(s)?

Schema evolution and registry

Health Can we automate quality in our

delivery?

Tracing-based automated testing,

SDLC alignment with GraphQL

delivery

Health Can we observe the health of the

graph as a product, not as a series

of disjointed services?

Integrated observability, data

graph-specific tracing

Education To Support Organizational Change 21

Education To Support Organizational Change

A comprehensive, continuous education plan has proven crucial to Apollo’s

customers’ success in the enterprise. Once one understands the changes to the

organization’s graph, a key early step is to educate the teams andmanagement

who will drive and support the changes. Graph Champions within the organiza-

tion have a responsibility to provide education support. Thankfully, both Apollo

and the wider GraphQL community have a foundational set of resources.

An example educational outline for GraphQL adoption and change should likely

include the following:

• GraphQL introduction:

– Facebook

– Reference Implementation

– Purpose

• Principled GraphQL

Summary

Graph Champions provide essential capabilities to an enterprise’s GraphQL

consolidation work. When viewed as a product, the value of a data graph serves

many technical customers and, ultimately, the business’ strategic goals. A

successful consolidation strategy needs leaders that can properly equip data

graph contributors with the tools they need while also advocating for, governing,

andmaintaining the overall health of the data graph. Graph Champions are

also well-positioned to help an organization navigate some of the challenges of

consolidation while providing educational support to graph contributors and

consumers alike.

https://graphql.org/learn/
https://graphql.org/graphql-js/
https://www.apollographql.com/docs/intro/benefits/
https://principledgraphql.com/

Consolidated Architectures with

Federation

By Mandi Wise

Chapter 1 touched on the high-level architecture of GraphQL APIs that are con-

solidated via federation. By embracing this federated approach, teams can

address the lack of consistency that often emerges from other non-federated

GraphQL architectures while also exposing data within the graph in a demand-

oriented way. In this chapter, we’ll explore federation’s various implementation

details and architectural considerations in greater depth to gain a better under-

standing of how to fully realize its benefits.

A Better Way to Scale Distributed GraphQL Architectures

The first principle outlined in Principled GraphQL is “One Graph,” which states

that an organization should have a single unified graph, instead of multiple

graphs created by each team. While there are other pathways to a distributed

GraphQL architecture, federation is the only option that exposes a single entry

point to a data graph while simultaneously allowing teams tomaintain logi-

cal service boundaries between the portions of the graph that they own and

maintain. What’s more, federation offers a declarative interface for seamlessly

composing the independently managed schemas into a single API, unlike other

more brittle, imperative approaches like schema stitching.

We previously discussed that a federated GraphQL architecture consists of two

main components: first, a collection of subgraphs, and second, a subgraphs

that sits in front of those services and composes their distinct schemas into a

federated data graph. To facilitate schema composition, the gateway and sub-

graphs use spec-compliant features of GraphQL, so any language can implement

federation.

22

https://principledgraphql.com/

A Better Way to Scale Distributed GraphQL Architectures 23

Visit the Apollo documentation to view the full federation specification.

Historically at Apollo, we have seen that federation usually isn’t a starting point

for most enterprises in the early stages of adopting GraphQL. While it can be in

some cases, implementing federation before running GraphQL in production

with a pre-consolidation pattern will likely necessitate large education and

integration efforts for the teams who will be responsible for managing portions

of the data graph. It may also skew the focus of this process heavily toward data

modelling across services instead of product delivery.

More often, as GraphQL’s surface area expands across teams’ tech stacks,

pain points emerge as these teams attempt to scale within the various pre-

consolidation patterns (discussed in Chapter 1) and perhaps even begin to

experiment with other non-federated approaches to consolidation. Graph Cham-

pions within the organization emerge and drive the teams toward a federated

architecture to unify the disparate portions of the data graph, increase developer

velocity, and scale GraphQL APIs more effectively.

In our experience, these paths are well-worn and converge on a shift toward a

federated data graph. This transition was designed tominimize disruption to

teams that are currently contributing to and consuming existing GraphQL APIs.

When this transition is properly executed, champions can improve the semantics

and expressiveness of the data graph while facilitating improved collaboration

between teams. Federated architectures achieve these ends by adhering to two

core principles: incremental adoption and separation of concerns.

Core Principle #1: Incremental Adoption

Just as any GraphQL schema should be built up incrementally and evolved

smoothly over time (as outlined in detail as one of the “Agility” principles in

Principled GraphQL), a federated GraphQL architecture should be similarly

rolled-out through a phased process.

For most teams, a “big bang” rewrite of all existing GraphQL APIs or all portions

of a monolithic GraphQL schemamay not be fruitful or even advisable. When

adopting federation, we recommend that an enterprise identify a small but

meaningful piece of their existing GraphQL implementation to isolate as the first

subgraph (or a small number of subgraphs, if required). Taking an incremental

approach to federating the graph will allow you to gradually define services

boundaries, identify appropriate connection points between subgraphs, and

learn as you go.

https://www.apollographql.com/docs/federation/federation-spec/
https://principledgraphql.com/

24 Consolidated Architectures with Federation

Additionally, whatever portion of the data graph you scope into an initial sub-

graphs should have at least one client that actively continues to consume this

data. From the client’s perspective, the transition to federation can and should

be as seamless as possible, and continued consumption of this data can help

you validate assumptions, test out new federation tooling, and help you under-

stand how to best delineate future subgraphs’ boundaries.

Core Principle #2: Separation of Concerns

The second core principle of federation is also one of its main architectural

advantages when consolidating GraphQL in an enterprise. Federation allows

teams to partition the schema of the unified data graph using concern-based

separation rather than type-based separation. This distinction sets federation

apart from other consolidation approaches like schema stitching and allows

teams to collaborate on and contribute to the data graph in a more organic and

productive way.

While dividing a GraphQL schema across teams based on types may initially

make sense, in practice, types will often contain fields that cannot be neatly

encapsulated within a single service’s boundaries. For example, where one team

maintains a products service and another maintains a reviews services, how do

you define the relationship that a list of reviews has to a given product or that a

product has to a specific review in these portions of the schema?

In these instances, foreign key-like fields may find their way into the types, which

reduces the expressiveness of relationships between nodes in the graph and

exposes underlying implementation details instead of serving product use cases.

Alternatively, a non-trivial amount of imperative code would be required to link

the types together in a stitched schema.

Concern-based separation allows each service to define the types and fields

that it is capable of (and should be responsible for) populating from its back-end

data store. The boundaries that encompass these concerns that are related to

team structure, geographic hosting, performance, governance and compliance,

or some combination thereof. Other services may then directly reference and

extend those types in their schemas with new fields backed by their data stores.

Teamsmaintain their respective portions of the graph with little-to-no friction.

The resulting API is a holistic, client-friendly representation of the enterprise’s

unified data graph.

Subgraphs and the Gateway 25

Apollo Studio provides the necessary tooling to help you in understand

references, extensions, and dependencies between graphs. Learn more

about Apollo Studio’s features.

Subgraphs and the Gateway

To set up a federated data graph, we will need at least one federation-ready

subgraph service and a gateway GraphQL API to sit in front of it. Note that in

practice, a federated data graph will typically havemultiple subgraphs behind

the gateway as follows:

To create a subgraph with Apollo Server, we would also install the

@apollo/federation package alongside it and use its buildFederatedSchema
function to decorate the service’s schema with the additional federation-specific

types and directives. For example:

const { ApolloServer } = require("apollo-server");
const { buildFederatedSchema } = require("@apollo/federation");

// ...

const server = new ApolloServer({
schema: buildFederatedSchema([{ typeDefs, resolvers }])

});

server.listen(4001).then(({ url }) => {
console.log(`Server ready at ${url}`);

});

The buildFederatedSchema function ensures that the subgraph’s schema

conforms to the Apollo Federation specification and also exposes that schema’s

https://www.apollographql.com/studio/develop

26 Consolidated Architectures with Federation

capabilities to the gateway. In addition to Apollo Server, many third-party li-

braries provide support for Apollo Federation in a variety of languages including

Java, Kotlin, Ruby, and Python.

With a subgraph in place, we can configure a gateway to sit in front of

that service. By creating a new Apollo Server in conjunction with the

@apollo/gateway package, we can declaratively compose the subgraph’s

schema into a federated data graph:

const { ApolloGateway } = require("@apollo/gateway");
const { ApolloServer } = require("apollo-server");

const gateway = new ApolloGateway({
serviceList: [

{ name: "accounts", url: "http://localhost:4001" }
]

});

const server = new ApolloServer({
gateway,
subscriptions: false,

});

server.listen(4000).then(({ url }) => {
console.log(`Server ready at ${url}`);

});

When the gateway starts up, it uses the URLs provided in the serviceList to

fetch the schema from each subgraph to compose the federated data graph. In

production, we recommend running the gateway in amanagedmodewith

Apollo Studio (using static configuration files instead of querying service

schemas at start-up), which we’ll explore further later in this chapter.

At this time, subscription operations are not supported with Apollo

Federation, so the subscriptions option must be set to false.

The Apollo team has explored other patterns for serving real-time queries

with a federated GraphQL API, which you can view in this repository.

When a request reaches the gateway-enabled Apollo Server, it will execute the

incoming operation across the subgraphs and then form the overall response.

How that request is optimized and fulfilled across the federated data graph is

determined by a key feature of the gateway known as query planning.

https://www.apollographql.com/docs/federation/other-servers/
https://www.apollographql.com/docs/federation/other-servers/
https://github.com/apollographql/real-time-federation

Connecting the Data Graph with Entities 27

At a high level, query planning works by optimizing for the most time spent in

a single service to reduce the number of network hops. More specifically, the

gateway used a service-based depth-first approach to operation execution

across services, unlike the breadth-first approach typically used bymonolithic

GraphQL servers.

Customizing Service-Level Execution

Apollo Gateway also exposes a configuration option called buildService that

allows both customization of requests before directing them to a subgraph and

also modification of the responses received from a subgraph service before

delivering those results to a client. This option can be particularly useful when

forwarding auth-related headers from the gateway to the subgraphs or when

customizing headers sent in a query response.

Connecting the Data Graph with Entities

The core building blocks of a federated data graph are known as entities. An

entity is a type that we canonically define in one subgraph’s schema and then

reference and extend by other services. As per the Apollo Federation specifica-

tion, we define entities in a subgraph’s schema using the @key directive.

The @key directive defines a primary key for the entity and its fields argu-

ment will contain one or more of the type’s fields. For example:

type User @key(fields: "id") {
id: ID!
name: String
username: String

}

The @key directive may be used to define multiple primary keys for an entity:

type Product @key(fields: "upc") @key(fields: "sku") {
upc: String!
sku: String!
name: String
price: Int
brand: Brand
weight: Int

}

The @key directive also supports compound primary keys for nested fields:

28 Consolidated Architectures with Federation

type User @key(fields: "id organization { id }") {
id: ID!
name: String
username: String
organization: Organization!

}

type Organization {
id: ID!

}

Referencing Entities

After defining an entity in a schema, other subgraphs can reference that entity

in their schemas. In order for the referencing service’s schema to be valid, it

must define a stub of the entity in its schema. For example, we can reference

a Product type defined in one service as the return type corresponding to a

product field on a Review type defined in another service:

type Review @key(fields: "id") {
id: ID!
body: String
product: Product

}

extend type Product @key(fields: "upc") {
upc: String! @external

}

Note that the GraphQL spec-compliant extend keyword is used before the

referenced Product type, indicating that this type was defined in another

subgraph. The @key directive indicates that the reviews service will be able to

identify a product by its UPC value and therefore be able to connect to a product

based on its upc primary key field, but the reviews service does not need to

be aware of any other details about a given product. The @external directive

is required on the upc field in the Product definition in the review service to

indicate that the field originates in another service.

Because the reviews service only knows about a product’s UPC, it will be unable

to resolve all of a Product type’s fields. As a result, the reviews service’s resolver

for the product field will only a return a representation of the product with the

primary key field value as follows:

Connecting the Data Graph with Entities 29

{
Review: {

product(review) {
return { __typename: "Product", upc: review.upc };

}
}

}

Resolving References

To resolve any additional fields requested on Product, the gateway will pass

that representation to the products services to be fully resolved. To fetch the

product object that corresponds to the reference, the products service must

implement a reference resolver for the Product type:

{
Product: {

__resolveReference(reference) {
return fetchProductByUPC(reference.upc);

}
}

}

With these resolvers in the place, the gateway can now successfully coordi-

nate execution of operations across service boundaries and clients canmake

GraphQL query requests to a single endpoint and in a shape that expresses the

natural relationship between products and reviews.

Extending Entities

Referencing entities is a key feature of federation, but it’s only half of the story.

While an entity will be owned by a single subgraph, other services may wish to

add additional fields to the entity’s type to provide amore holistic representa-

tion of the entity in the data graph. Doing so is a simple as adding the additional

field to the extended type in a non-originating service. For example, a reviews

service’s schemamay add a reviews field to the extended User type that was

originally defined in an accounts service:

extend type User @key(fields: "id") {
username: String @external
reviews: [Review]

}

30 Consolidated Architectures with Federation

The reviews service must then implement a resolver for the user’s reviews:

{
User: {

reviews(user) {
return fetchReviewsByUsername(user.username);

}
}

}

When extending entities, it’s important to keep in mind that the entity’s orig-

inating service will not be aware of the added fields. Additionally, each field

in an entity must only be defined once or the gateway will encounter schema

composition errors.

Advanced Extensions, Calculated Fields and Optimizations

Extension points within a data graph can also be leveraged for advanced use

cases. In one advanced scenario, an entity may be extended with computed

fields by requiring fields from the entity’s originating service.

For example, a reviews service could add a custom reviewName field for a

product by using the @requires directive to specify the fields that it depends

on from the originating service. Using the @requires directives makes these

fields available to the reviews service when resolving the reviewName field even

if they weren’t requested by the client in the query operation:

extend type Product @key(fields: "sku") {
sku: String! @external
name: String @external
brand: Brand @external
reviewName(delimeter: String = " - "): String
@requires(fields: "name brand")

}

Multiple subgraphs may also resolve a field when data has been denormalized

across those services. In this scenario, applying the @provides directive on a

field definition that returns an extended type will tell the gateway that certain

fields for that entity can be resolved by the extending service too:

extend type User @key(fields: "id") {
username: String @external
reviews: [Review]

}

Defining Shared Types and Custom Directives 31

type Review @key(fields: "id") {
id: ID!
body: String
author: User @provides(fields: "username")
product: Product

}

The @provides directive helps to optimize how data is fetched by potentially

eliminating unnecessary calls to additional subgraphs. In the above example,

the reviews service is capable of resolving an author’s username, so a request to

the accounts service may be avoided if no additional data is required about the

user.

This directive can be a useful (but optional) optimization that helps support the

gateway’s query planner in determining how to execute a query across as few

services as possible, but its usage comes with a few important caveats:

• The subgraph that extends the entity must define a resolver for any field to

which it applies the @provides directive

• There is no guarantee as to which service will ultimately resolve the field in

the query plan

• The fields argument of @provides does not support compound fields

Extending Query and Mutation Types

As a final note on type extensions, when defining queries andmutations in a

subgraph’s schema we also add the extend keyword in from of the Query and

Mutation types. Because these types will originate at the gateway level of the

API, all subgraphs should extend these types with any additional operations.

For example, type Querywould be prefixed by the extend keyword in the

accounts service as follows:

extend type Query {
me: User

}

Defining Shared Types and Custom Directives

Value Types

In some instances, subgraphs may need to share ownership of a type rather than

turning it into an entity and assigning it to a particular service. As a result, Apollo

32 Consolidated Architectures with Federation

Federation provides support for shared value types including Scalars, Objects,

Interfaces, Enums, Unions, and Inputs. When subgraphs share value types, then

those types must be identical in name in contents, otherwise, composition

errors will occur.

Please see the Apollo Federation documentation for detailed instructions

on sharing types across subgraphs.

Custom Directives

Apollo Gateway provides support for both type system directives and executable

directives. Type system directives are applied directly to a subgraph’s schema

while executable directives are applied in operations sent from a client.

To provide support for type system directives, Apollo Gateway effectively ignores

them by removing all of their definitions and uses from the final composed

schema. The definitions and uses of these custom directives remain intact in the

subgraph’s schema and are processed at that level only.

Executable directives, on the other hand, are treatedmuch like shared value

types. These directives must be defined in the schemas of all subgraphs with the

same locations, arguments, and argument types, or else composition errors will

occur. Correspondingly, subgraphs should also use the same logic to handling

executable directives as well to avoid ambiguity for the clients that apply those

directives to operations.

See the Apollo Federation documentation to readmore about handling

directives with subgraphs.

Managing Cross-Cutting Concerns

Whether sharing value types or executable directives across subgraphs, it’s

always important to consider the long-term implications of introducing cross-

cutting concerns that may impede teams’ abilities to manage and iterate their

portions of the data graph. At Apollo, we’ve seen enterprises introduce measures

into CI/CD pipelines to help manage composition errors as they occur when one

team introduces a changes to a shared value type, but be sure to evaluate the

complexity that each cross-cutting schema concern adds to your deployment

process before doing so.

https://www.apollographql.com/docs/federation/value-types/
https://www.apollographql.com/docs/federation/value-types/
http://spec.graphql.org/June2018/#TypeSystemDirectiveLocation
http://spec.graphql.org/June2018/#ExecutableDirectiveLocation
http://spec.graphql.org/June2018/#ExecutableDirectiveLocation
https://www.apollographql.com/docs/federation/implementing-services/#defining-custom-directives
https://www.apollographql.com/docs/federation/implementing-services/#defining-custom-directives

Managed Federation 33

Managed Federation

In the previous examples, we have seen how to run a federated data graph

using a list of service URLs. As a best practice, Apollo Gateway can also run in

a managed federationmode and use Apollo Studio as the source of truth for

each subgraph’s schema. With managed federation, the gateway is no longer

responsible for fetching and composing schemas from the subgraph services.

Instead, each service pushes its schema to a registry, and upon composition,

Apollo Studio updates a dedicated configuration file for the graph in Google

Cloud Services. The gateway then regularly polls Apollo Studio for updates to

the data graph’s configuration, as visualized below:

Managed federation supports team collaboration across a distributed GraphQL

architecture by allowing each team to safely validate and deploy their por-

tions of the data graph. A managed approach to federation also provides an

enterprise with critical observability features to monitor changes in data graph

performance via field-level tracing. We will explore managed federation in-depth

in relation to graph administration best practices in a later chapter.

Summary

In this chapter, we explored the features and benefits of a federated schema

and how they may be realized using Apollo libraries. Federation is underpinned

by the principles of incremental adoption and separation of concerns. By

adhering to these principles, teams within an enterprise can work toward a

consolidated GraphQL architecture along a minimally-disruptive migration path.

Federation enables teams to independently, yet collaboratively, manage por-

https://www.apollographql.com/docs/federation/managed-federation/overview/
https://www.apollographql.com/docs/studio/

34 Consolidated Architectures with Federation

tions of the single, unified data graph. Entities are the key feature of a federated

data graph that provides the extension points among subgraphs and power that

collaborative work.

With an understanding of the basic mechanics of federation in place, in the next

chapter, we’ll explore schema design best practices with special consideration

for federated data graphs.

Federated Schema Design Best

Practices

By Mandi Wise

GraphQL is a relatively new technology, but from its rapid and widespread adop-

tion has emerged a host of common schema design best practices—both from

the enterprises that use it at scale every day, as well as the broader developer

community. The majority of best practices that apply to non-federated GraphQL

schema design also apply when designing service schemas within a federated

data graph. However, federated schema design rewards some additional best

practices when extracting portions of a data graph into subgraphs and determin-

ing what extension points to expose between service boundaries.

As we saw in the previous chapter, entities are the core building blocks of a

federated data graph, so the adoption of any schema design best practice

must be approached with the unique role of entities in mind. A successful

federated schema design process should begin by thinking about what the initial

entity types will be and how they will be referenced, extended, and leveraged

throughout the graph to help preserve the separation of concerns between

services—both today and as the graph evolves in the future.

Whenmigrating from a client-only or monolithic GraphQL pattern, that work be-

gins by identifying what entities will be exposed in the first subgraph extracted

from the larger schema. Whenmigrating from an architecture consisting of BFF-

based GraphQL APIs or any other architecture of multiple overlapping graphs,

the work of identifying entities (and determining new service boundaries, in

general) may be a bit more complex and involve some degree of negotiation with

respect to type ownership, as well as a migration process to help account for any

breaking changes that may result for clients.

Whatever your architectural starting point, Apollo Federation was designed to

allow the work of identifying entities and defining subgraph boundaries to be

done in an incremental, non-disruptive fashion. Beginning to identify these

35

36 Federated Schema Design Best Practices

entities is also the essential prerequisite for adopting the other schema design

best practices that will follow.

In this chapter, we’ll explore some proven best practices for GraphQL schema de-

sign with a specific lens on how these practices relate to federated data graphs,

as well as any special considerations and trade-offs to keep in mind when design-

ing and evolving schemas across a distributed GraphQL architecture.

Best Practice #1: Design Schemas in a Demand-Oriented,

Abstract Way

The shift to a unified data graph is almost invariably motivated in part by a

desire to simplify how clients access the data they need from a GraphQL API

backed by a distributed service architecture. And while GraphQL offers the

promise of taking a client-driven approach to API design and development, it

provides no inherent guarantee that any given schema will lend itself to real

client use cases.

To best support the client applications that consume data from our federated

graph, wemust intentionally design schemas in an abstract, demand-oriented

way. This concept is formalized as one of the “Agility” principles in Principled

GraphQL, stating that a schema should not be tightly coupled to any particular

client, nor should it expose implementation details of any particular service.

Prioritize Client Needs, But Not Just One Client’s Needs

Creating a schema that is simultaneously demand-oriented while avoiding

the over-prioritization of a single client’s needs requires some upfront work—

specifically, client teams should be consulted early on in the API design process.

From a data-graph-as-a-product perspective, this is an essential form of foun-

dational research to ensure the product satisfies user needs. This research

should also continue to happen on an ongoing basis as the data graph and client

requirements evolve.

Client teams should drive these discussions wherever possible. That means

in practice, instead of providing a draft schema to a client team and asking

for feedback, it’s better to work through exercises where you ask client team

members to explain exactly what data is needed to render particular views and

have them suggest what the ideal shape of that data would be. It is then the task

of the schema designers to aggregate this feedback and reconcile it against the

broader product experiences that you want to drive via your data graph.

https://principledgraphql.com/agility
https://principledgraphql.com/agility

Best Practice #1: Design Schemas in a Demand-Oriented, Abstract Way 37

When thinking about driving product experiences via the data graph, keep

in mind that the overall schema of the data graph is a representation

of your product and each federated schema is the representation of a

domain boundary within the product. This is why Apollo Federation excels

at supporting omni-channel product strategies—the data graph can be

designed in a demand-oriented way that’s based on product functions

and the clients that query the graph can, in turn, evolve along with those

functions.

Keep Service Implementation Details Out of the Schema

Client team consultation can also help you avoid another schema design pitfall,

which is allowing the schema to be unduly influenced by backing services or

data sources.

Other approaches to GraphQL consolidation can make it challenging to side-step

this concern, but federation allows you to design your schema in a way that

expresses the natural relationships between the types in the graph. For example,

in a distributed GraphQL architecture without federation, foreign key-like fields

may be necessary for a subgraph’s schema to join the nodes of your data graph

together:

type Review {
id: ID!
productID: ID

}

With federation, however, a reviews service’s schema can represent a true subset

of the complete data graph:

extend type Product @key(fields: "id") {
id: ID! @external

}

type Review {
id: ID!
product: Product

}

As another common example of exposed implementation details, here we can

see how an underlying REST API data source could influence the names of

mutations in a service’s schema:

38 Federated Schema Design Best Practices

extend type Mutation {
postProduct(name: String!, description: String): Product
patchProduct(

id: ID!,
name: String,
description: String

): Product
}

A better approach would look like this:

extend type Mutation {
createProduct(name: String!, description: String): Product
updateProductName(id: ID!, name: String!): Product
updateProductDescription(

id: ID!,
description: String!

): Product
}

The revised Mutation fields better describe what is happening from a client’s

perspective and offer a finer-grained approach to handling updates to a prod-

uct’s name and description values where those updates need to be handled

independently in a client application. Using two separate update mutations

also helps disambiguate what would happen if a client sent the patchProduct
mutation with no name or description arguments (because the mutation

could handle updating one value or the other, but does not require both for any

given operation) and saves the subgraph from having to handle these errors at

runtime. We’ll speakmore on the use cases for finer-grainedmutations in the

next section.

As a final, related point on hiding implementation details in the schema, we

should also avoid exposing fields in a schema that clients don’t have any reason

to use. If a schema is intentionally and iteratively developed based on the

aggregation of product functions and client use cases, then this issue can easily

be avoided.

However, when tools are used to auto-generate a GraphQL schema based on

backing data sources, then you will almost invariably end up with fields in your

schema that clients don’t need but may develop unintended use cases for in the

future, which will make your schema harder to evolve over the longer term. This

is why, at Apollo, we generally discourage the use of schema auto-generation

tools—they lead you in precisely the opposite direction of taking a client-first

approach to schema design.

Best Practice #2: Prioritize Schema Expressiveness 39

Best Practice #2: Prioritize Schema Expressiveness

A good GraphQL schema will convey meaning about the underlying nodes in an

enterprise’s data graph, as well as the relationships between those nodes. There

are multiple dimensions to schema expressiveness—many of which overlap

with other schema design best practices—but here we’ll focus specifically on

standardizing naming and formatting conventions across services, designing

purposeful fields in a schema, and augmenting an inherently expressive schema

with thorough documentation directly in its SDL to maximize usability.

Standardize Naming and Formatting Conventions

There are only two hard things in Computer Science: cache invalidation and

naming things.

—Phil Karlton

Arguably, the “naming things” aspect of this observation grows evenmore chal-

lenging when trying to name things consistently across a distributed GraphQL

architecture supported by many teams! (Same goes for caching, but we’ll cover

that topic separately in a later chapter.)

Being consistent about how you name things may go without saying, but it’s

even more important when composing schemas frommultiple subgraphs into a

single federated GraphQL API. The “One Graph” principle that drives federation

is meant to help improve consistency for clients, and that consistency should

include naming conventions. For example, having a users query defined in one

service and a getProducts query defined in another doesn’t provide a very

consistent or predictable experience for data graph consumers. Similar to fields,

type naming and name-spacing conventions should also be standardized across

the graph.

Additionally, when an enterprise already has multiple GraphQL APIs in use that

will be rolled into the federated data graph, the names of the types within those

existing schemas may collide. In these instances, a decision must be made about

whether those colliding types should become an entity within the graph or a

value type, or if some kind of name-spaced approach is warranted.

The outset of a migration project to a federated data graph is the right time to

take stock of what naming conventions are currently used in existing GraphQL

schemas within the enterprise, determine what conventions will become stan-

dardized, onboard teams to those conventions, and plan for deprecations and

rollovers as needed. Additionally, there should also be a thorough review pro-

40 Federated Schema Design Best Practices

cess in place as the graph evolves to ensure that new fields, types, and services

adhere to these conventions.

A Brief Note on Pagination Conventions

Another important area of standardization when consolidating GraphQL

APIs across an enterprise is providing clients a consistent experience

for paginating field results across services. On this topic, we offer these

high-level guidelines:

• Add pagination when it’s necessary. Don’t add pagination arguments

to a field when a basic list will suffice.

• When pagination is warranted, leverage your consolidation efforts

as an opportunity to standardize type system elements that support

pagination (for example, arguments and pagination-related object

types and enums).

• Standardizing pagination across your data graph doesn’t mean

preferring one style of pagination over another (for example, offset-

based or cursor-based pagination). Choose the right tool for the job,

but ensure that each style of pagination is implemented consistently

across services.

• Your internal data graph governance group should actively enforce

pagination standards across your subgraphs to maintain consistency

for clients.

Design Fields Around Specific Use Cases

As mentioned previously, a GraphQL schema should be designed around client

use cases, and ideally, the fields that are added to a schema to support those

use cases will be single-purpose. In practice, this means having more specific,

finer-grained mutations and queries.

While it’s still important to ensure that we don’t expose unneeded fields in a

schema, that doesn’t mean we should avoid adding additional queries and

mutations to a schema if they are driven by client needs. For example, having

two userById and userByUsername queries may be a better choice than a

single user query that accepts either a name or ID as a nullable argument.

Because the more generalized user query could fetch a user by name or ID it

necessitates nullable arguments, which creates ambiguity for the client about

what will happen if the query is submitted with neither of those arguments

included.

Convoluted input types can also complicate the observability story for your data

graph. If an input is used to contain query arguments, then each additional field

Best Practice #2: Prioritize Schema Expressiveness 41

added to the input canmake it increasingly opaque as to what field may be the

root cause of a particularly slow query when viewing an operation’s traces in

your observability tools.

Taking a finer-grained approach also applies to update-relatedmutations.

For example, rather than having a single updateAccountmutations to rule

them all, use more purpose-drivenmutations when these values are updated

independently by clients. For example, consider this series of mutations used to

update a user’s account information:

type Mutation {
addSecondaryEmail(email: String!): Void
changeBillingAddress(address: AddressInput!): Account
updateFullName(name: String!): Void

}

If any of these values needed to be updated simultaneously or not at all, then it

would make sense to bundle the updates into a coarser-grainedmutation. But

with this caveat aside, opting for finer-grainedmutations helps avoid the same

pitfalls as finer-grained queries do and saves you from doing extra validation

work at runtime to determine that the submitted arguments will lead to a logical

outcome for a mutation.

As a final note on field use cases, fields within a schema can be leveraged as an

entry point to what authenticated users can do within that schema. A common

pattern is to add a viewer or me query to an API, and the GitHub GraphQL API

provides a notable example of this pattern:

type Query {
...
"The currently authenticated user."
viewer: User!

}

Document Types, Fields, and Arguments

A well-documented schema isn’t just a nicety in GraphQL. The imperative to doc-

ument the various aspects of a schema is codified in the GraphQL specification.

The specification states that documentation is a “first-class feature of GraphQL

type systems” and goes further to say that all types, fields, arguments, and other

definitions that can be described should include a description unless they are

self-descriptive.

https://docs.github.com/en/free-pro-team@latest/graphql
https://spec.graphql.org/June2018/#sec-Descriptions

42 Federated Schema Design Best Practices

So while in many regards a well-designed, expressive schema will be self-

documenting, using the SDL-supported description syntax to fully describe

how the types, fields, and arguments in an API behave will provide an extra

measure of transparency for data graph consumers. For example:

extend type Query {
"""
Fetch a paginated list of products based on a filter.
"""
products(

"How many products to retrieve per page."
first: Int = 5

"Begin paginating results after a product ID."
after: Int = 0

"""
Filter products based on a type.

Products with any type are returned by default.
"""
type: ProductType

): ProductConnection
}

In the example above, we see how a thoroughly described products query may

look when the query and each of its arguments are documented. And just as

with naming conventions, it’s important to establish standards for documenta-

tion across a federated data graph from its inception to ensure consistency for

API consumers. Similarly, there should also be governance measures in place to

ensure that documentation standards are adhered to as the schema continues

to evolve.

Note that when documenting subgraphs’ schema files, we can’t add

descriptions strings above extended types (including extended Query and

Mutation types) because the GraphQL specification states that only type

definitions can have descriptions, not type extensions.

Best Practice #3: Make Intentional Choices About

Nullability

All fields in GraphQL are nullable by default and it’s often best to err on the side

of embracing that default behavior as new fields are initially added to a schema.

Best Practice #3: Make Intentional Choices About Nullability 43

However, where warranted, non-null fields and arguments (denoted with a

trailing !) are an important mechanism that can help improve the expressive-

ness and predictability of a schema. Non-null fields can also be a win for clients

because they will know exactly where to expect values to be returned when

handling query responses. Non-null fields and arguments do, of course, come

with trade-offs, and it’s important to weigh the implications of each choice you

make about nullability for every type, field, and argument in a schema.

Plan for Backward Compatibility

Including non-null fields and arguments in a schemamakes that schema harder

to evolve where a client expects a previously non-null field’s value to be pro-

vided in a response. For example, if a non-null email field on a User type is

converted to a nullable field, will the clients that use that field be prepared to

handle this potentially null value after the schema is updated? Similarly, if the

schema changes in such a way that a client is suddenly expected to send a previ-

ously nullable argument with a request, then this may also result in a breaking

change.

While it’s important to make informed decisions about nullability when ini-

tially designing a service’s schema, you will inevitably be faced with making a

breaking change of this nature as a schema naturally evolves. When this hap-

pens, GraphQL observability tools that give you insight into how those fields are

used currently in different operations and across different clients. This visibility

will help you identify issues proactively and allow you to communicate these

changes to impacted clients in advance so they can avoid unexpected errors.

Minimize Nullable Arguments and Input Fields

As mentioned previously, converting a nullable argument or input field for

a mutation to non-null may lead to breaking changes for clients. As a result,

specifying non-null arguments and input fields on mutations can help you avoid

this breaking change scenario in the future. Doing so, however, will typically

require that you design finer-grained mutations and avoid using “everything but

the kitchen sink” input types as arguments that are filled with nullable fields to

account for all possible use cases.

This approach also enhances the overall expressiveness of the schema and

provides more transparency in your observability tools about how arguments

impact overall performance (this is especially true for queries). What’s more, it

also shifts the burden away from data graph consumers to guess exactly which

fields need to be included in mutation to achieve their desired result.

44 Federated Schema Design Best Practices

Tip: Use Default Values for Nullable Arguments and Input Fields

Providing a default value for a nullable argument or input field will also

improve the overall expressiveness of a schema bymaking default behav-

iors more transparent. In our previous products query example, we can

improve the type argument by adding an ALL value to its corresponding

ProductType enum and setting the default value to ALL. As a result, we

no longer need to provide specific directions about this behavior in the

argument’s description string:

extend type Query {
"Fetch a paginated list of products based on a filter."
products(

...

"Filter products based on a type."
type: ProductType = ALL

): ProductConnection
}

Weigh the Implications of Non-Null Entity References

When adding fields to a schema that are resolved with data from third-party

data sources, the conventional advice is to make these fields nullable given the

potential for the request to fail or for the data source to make breaking changes

without warning. Federated data graphs add an interesting dimension to these

considerations given that many of the entities in the graphmay be backed by

data sources that are not in a given service’s immediate control.

The matter of whether you should make referenced entities nullable in a sub-

graph’s schema will depend on your enterprise’s existing architecture and likely

need to be assessed on a case-by-case basis. Keep in mind the implication

that nullability has on error handling—specifically, when a value cannot be re-

solved for a non-null field, then the null result bubbles up to the nearest nullable

parent—and consider whether it’s better to have a partial result or no result at all

if a request for an entity fails.

Best Practice #4: Use Abstract Type Judiciously

The GraphQL specification currently offers two abstract types in the type

system—interfaces and unions. Both interfaces and unions are powerful tools

to express relationships between types in a schema. However, when adding

Best Practice #4: Use Abstract Type Judiciously 45

interfaces and unions to a schema—and in particular, a federated schema—it’s

important to do so with a clear-eyed understanding of the longer-term impli-

cations of managing these types. To do so, wemust first ensure that we’re

using interfaces and unions in semantically purposeful ways. Second, wemust

help prepare client developers to handle changes to these types as the schema

evolves.

Create Semantically Meaningful Interfaces

A commonmisuse of interfaces is to use them simply to express a contract for

shared fields between types. While this is certainly an aspect of their intended

use, they should only be used when you need to return an object or a set of

objects from a field and those objects may represent a variety of different types

with some fields in common. For example:

interface Pet {
breed: String

}

type Cat implements Pet {
breed: String
extraversionScore: Int

}

type Dog implements Pet {
breed: String
activityLevelScore: Int

}

type Query {
familyPets: [Pet]

}

In this schema, the familyPets query returns a list of cats and dogs, with a

guarantee that the breed field will be implemented on both the Cat and Dog
types. A client can then query for these types’ shared fields as usual, or use inline

fragments for the Cat and Dog types to fetch their type-specific fields:

query GetFamilyPets {
familyPets {

breed
... on Cat {
extraversionScore

}
... on Dog {

46 Federated Schema Design Best Practices

activityLevelScore
}

}
}

If there was no use case for querying both cats and dogs simultaneously to

return both types from a single operation, then the Pet interface wouldn’t serve

any notable purpose in this schema. Instead, it would add overhead to schema

maintenance by requiring that the Cat and Dog types continue to adhere to this

interface as they evolve, but with no functional reason as to why they should

continue conforming to Pet.

What’s more, the overhead for maintaining both interface and union types is

amplified when dealing with federated data graphs. Where interfaces and unions

are shared as value types across schemas, they become cross-cutting concerns

(which we’ll address further in a later section). Further, interfaces may also be

entities in a federated data graph, so challenging decisions may need to be

made about which service ultimately “owns” interface entities and whether the

services that implement them in a schema can adequately resolve all the types

that belong to that interface.

While interfaces are abstract types, they should ultimately represent something

concrete about the relationship they codify in a schema and they should indi-

cate some shared behavior among the types that implement them. Satisfying

this baseline requirement can help guide your decisions about where to use

interfaces selectively in your federated schemas.

Help Clients Prepare for Breaking Changes

Interfaces and unions should be added to a schema and subsequently evolved

with careful consideration because subtle breaking changes can occur for the

API consumers that rely on them. For example, client applications may not be

prepared to handle new types as they are added to interfaces and unions, which

may lead to unexpected behavior in existing operations. From our previous

example, a new Goldfish type may implement the Pet interface as follows:

type Goldfish implements Pet {
breed: String
lifespan: Int

}

The previous GetFamilyPet query may now return results that include gold-

fish, but the client’s user interface may have been tailored to only handle cats

Best Practice #5: Leverage SDL and Tooling to Manage Deprecations 47

and dogs in the results. And without a new inline fragment in the operation

document to handle the Goldfish type, there will be no way to retrieve its

lifespan field value.

As such, it’s important to communicate these changes to client developers in

advance and it’s also incumbent on client developers to treat fields that return

abstract types with extra care to guard against potential breaking changes.

Best Practice #5: Leverage SDL and Tooling to Manage

Deprecations

Your internal data graph governance group should outline an enterprise-wide

field rollover strategy to gracefully handle type and field deprecations through-

out the unified graph. We’ll discuss graph administration and governance

concerns in-depth in the next chapter, so in this section, we’ll focus onmore

tactical considerations when deprecating fields in a GraphQL schema.

GraphQL APIs can be versioned, but at Apollo, we have seen that it is far more

common for enterprises to leverage GraphQL’s inherently evolutionary nature

and iterate their APIs on a rapid and incremental basis. Doing so, however,

requires clear communication with API consumers, and especially when field

deprecations are required.

Use the@deprecated Type System Directive

As a first step, the @deprecated directive, which is defined in the GraphQL

specification, should be applied when deprecating fields or enum values in

a schema. Its single reason argument can also provide the API consumer

some direction about what to do instead of using that field or enum value.

For instance, in our earlier products example we can indicate that a related

topProducts query has been deprecated as follows:

extend type Query {
"""
Fetch a simple list of products with an offset
"""
topProducts(

"How many products to retrieve per page."
first: Int = 5

): [Product] @deprecated(reason: "Use `products` instead.")

"""
Fetch a paginated list of products based on a filter type.
"""

https://spec.graphql.org/June2018/#sec--deprecated
https://spec.graphql.org/June2018/#sec--deprecated

48 Federated Schema Design Best Practices

products(
"How many products to retrieve per page."
first: Int = 5
"Begin paginating results after a product ID."
after: Int = 0
"Filter products based on a type."
type: ProductType = LATEST

): ProductConnection
}

Use Operation Traces to Assess When It’s Safe to Remove Fields

After a service’s schema has been updated with new @deprecated directives,

it’s important to communicate the deprecations beyond the SDL as well. Using

a dedicated Slack channel or teammeetings may serve as appropriate com-

munication channels for such notices, and they should be delivered with any

additional migration instructions for client teams.

At this point, a crucial question still remains: “When will it be safe to remove

the deprecated field?” To answer this question with certainty that you won’t

cause any breaking changes to client applications, youmust lean on your ob-

servability tooling. Specifically, tracing data can provide insight into what

clients may still be using the deprecated fields so appropriate follow-ups can

be actioned. GraphQL observability tools such as Apollo Studio will check any

changes pushed for registered schemas against a recent window of operation

tracing data to ensure that a deprecated field rollover can be completed without

causing any breaking changes to existing clients.

Best Practice #6: Handle Errors in a Client-Friendly Way

Given that GraphQL offers a demand-oriented approach to building APIs, it’s

important to take a client-centric approach to handle errors when something

goes wrong during operation execution as well. There are currently twomain

approaches for handling and sending errors to clients that result from GraphQL

operations. The first is to take advantage of the error-related behaviors outlined

by the GraphQL specification. The second option is to take an “error as data”

approach and codify a range of possible response states directly in the schema.

Choosing the correct approach for handling a particular error will depend largely

on the type of error that was encountered, and, as always, should be informed

by real-world client use cases.

https://www.apollographql.com/docs/studio/
https://spec.graphql.org/June2018/#sec-Errors
https://spec.graphql.org/June2018/#sec-Errors

Best Practice #6: Handle Errors in a Client-Friendly Way 49

Use the Built-in Errors List When Things Really Do Go Wrong

The GraphQL specification outlines certain error handling procedures in re-

sponses, so we’ll explore how this default behavior works first. GraphQL has

a unique feature in that it allows you to send back both data and errors in the

same response (on the data and errors keys, respectively). According to the

GraphQL specification, if errors occur during the execution of a GraphQL opera-

tion, then they will be added to the list of errors in the response along with any

partial data that may be safely returned.

At a minimum, a single error map in the errors list will contain a message key

with a description of the error, but it may also contain location and path keys

if the error can be attributed to a specific point in the operation document. For

example, for the following query operation:

query GetUserByLogin {
user(login: "incorrect_login") {

name
}

}

The data key will contain a null user and the errors key in the response can

be structured with a single error map as follows:

{
"data": {

"user": null
},
"errors": [

{
"type": "NOT_FOUND",
"path": [

"user"
],
"locations": [

{
"line": 7,
"column": 3

}
],
"message": "Could not resolve to a User with the login
of 'incorrect_login'."

}
]

}

50 Federated Schema Design Best Practices

Many GraphQL servers (including Apollo Server) will provide additional de-

tails about errors inside the extensions key for each error in the errors list.

For instance, Apollo Server provides a stacktrace key nested inside of the

exception key of the extensionsmap.

The information inside of extensions can be further augmented by Apollo

Server by using one of its predefined errors, including AuthenticationError,
ForbiddenError, UserInputError, and a generic ApolloError.
Throwing one of these errors from a resolver function will add a human-

readable string to the code key in the extensionsmap. For example, an

AuthenticationError sets the code to UNAUTHENTICATED, which can signal

to the client that a user needs to re-authenticate:

{
"data": {

"me": null
},
"errors": [

{
"extensions": {

"code": "UNAUTHENTICATED",
"stacktrace": [...]

}
}

]
}

As a best practice, stack traces should be removed from an error’s

extensions key in production. This can be done by setting the debug op-

tion to false in the Apollo Server constructor, or by setting the NODE_ENV
environment variable to production or test.

Please see the Apollo Server documentation for more information on

handling, masking, and logging errors in production environments.

The detailed error response that is required by the GraphQL specification and

further enhanced by Apollo Server is sufficient to handle any error scenario that

arises during operation execution. However, these top-level errors that reside

in the response’s errors key are intended for exceptional circumstances and—

even with additional, human-readable details in an extensions key—may not

provide optimal ergonomics for client developers when rendering error-related

user interface elements.

https://www.apollographql.com/docs/apollo-server/data/errors/

Best Practice #6: Handle Errors in a Client-Friendly Way 51

For these reasons, the default approach to handling errors is best suited for

things that are truly errors. In other words, they should be used when something

happened that ordinarily wouldn’t happen during the execution of a GraphQL

operation. These kinds of errors could include an unavailable service, an ex-

ceeded query cost limit, or a syntax error that occurs during development. They

are exceptional occurrences outside of the API domain and are typically also

outside a client application’s end user’s control.

Represent Errors as Data to Communicate Other Possible States

Sometimes errors arise during the execution of a GraphQL operation fromwhich

a user may recover or reasonably ignore. For example, a new user may trigger a

mutation to create a new account but send a username argument that already

exists. In other scenarios, certain errors may occur due to situational factors,

such as data being unavailable when users are located in some countries.

In these instances, an errors as data approach is often preferable to returning

top-level errors in a response. Taking this approachmeans errors are coded

directly into the GraphQL schema and information about those errors will be

returned under the data key instead of pushed onto the errors list in the

response. As a result, what’s returned in the data for a GraphQL server response

may contain data related to the happy path of an operation or it may contain

data related to any number of unhappy path states.

There are different ways to describe these happy and unhappy paths in a

schema, but one of the most common is to use unions to represent collec-

tions of possible related states that may result from a given operation. Take the

following example that includes a User type defined in an accounts service and

extended to include a suggestedProducts field in a products service:

Accounts Service

type User @key(fields: "id") {
id: ID!
firstName: String
lastName: String
description: String

}

extend type Query {
me: User

}

52 Federated Schema Design Best Practices

Products Service

type Product @key(fields: "sku") {
sku: String!
name: String
price: Float

}

type ProductRemovedError {
reason: String
similarProducts: [Product]

}

union ProductResult = Product | ProductRemovedError

extend type User @key(fields: "id") {
id: ID! @external
suggestedProducts: [Product]

}

extend type Query {
products: [Product]

}

Above, the ProductResult type is a union of the two possible states of a prod-

uct: it is either available or it has been removed. In the case that a product has

been removed, related products can be presented to users in its place. A query

for suggested products for a currently logged in user would be structured as

follows:

query GetSuggestedProductsForUser {
me {

suggestedProducts {
__typename
... on Product {

name
sku

}
... on ProductRemovedError {

reason
similarProducts {

name
sku

}
}

}
}

}

Best Practice #7: Manage Cross-Cutting Concerns Carefully 53

Because we are queuing a union type, an inline fragment is used to handle the

fields relevant to each union member. The __typename field has been added to

the operation document to help the client conditionally render elements in the

user interface based on the returned type.

Through this example, we can begin to see how errors as data help support data

graph consumers in several compelling ways. First, creating a union of happy

and unhappy paths provides type safety for these potential states, which in turn

makes operation outcomes more predictable for clients and allows you to evolve

those states more transparently as a part of the schema.

Second, it also allows you to tailor error data to client use cases. Correspond-

ingly, the requirement to tailor a user experience around error handling is a

good indicator that those errors belong in the schema. And conversely, when

a data graph is intended to be used predominantly by third parties, it would

be impossible to customize error data to suit all possible user interfaces, so

top-level errors may be a better option in these instances.

Of course, there’s no such thing as an error-handling free lunch. Just as with

any union type, clients must be informed of and prepared to handle new result

types as they are added to the union (also reinforcing why this approach can be

problematic when unknown third parties may query your data graph).

Further, the key to implementing errors as data successfully in a schema is to do

so in a way that supports client developers in handling expected errors, rather

than overwhelm themwith edge-case possibilities or confuse them due to a lack

of consistency in adoption across the data graph. An enterprise’s data graph

governance groupmust play a key role in setting and enforcing standards for

how both top-level and schema-based errors will be handled across teams.

For an in-depth exploration of the errors as data approach, please see the

200 OK! Error Handling in GraphQL talk by Sasha Solomon from GraphQL

Summit 2020.

Best Practice #7: Manage Cross-Cutting Concerns

Carefully

In the previous chapter, we discussed how sharing value types (scalars, ob-

jects, interfaces, enums, unions, and inputs) and executable directives across

subgraphs’ schemas leads to cross-cutting concerns. As a general rule, where

subgraphs share value types, then those types must be identical in name, con-

tents, and logic, or composition errors will occur. Similarly, executable directives

https://youtu.be/RDNTP66oY2o

54 Federated Schema Design Best Practices

must be defined consistently in the schemas of all subgraphs using the same

locations, arguments, and argument types, or composition errors will also result.

In some instances, it will make sense for subgraphs to share ownership of certain

types instead of assigning that type to one service and exposing it as an entity.

For example, when a GraphQL API supports Relay-style pagination, it may be

necessary to share an identical PageInfo object type across multiple services

that require these pagination-related fields:

type PageInfo {
endCursor: String
hasNextPage: Boolean!
hasPreviousPage: Boolean!
startCursor: String

}

It wouldn’t make sense to expose PageInfo as an entity for several reasons,

not the least of which is that there is no obvious primary key that identifies

these objects. Further, the fields in this object type will be relatively stable

across subgraphs and over time, so the likelihood of complications arising from

evolving this type is minimal.

There’s no simple formula for evaluating the overhead added by a single value

type or executable directive in a federated GraphQL API. While they may impact

teams’ abilities to manage and iterate their portions of the data graph because

services may no longer be independently deployable, the long-term cost may

beminimal if the types or directives rarely change. As a best practice, your data

graph governance group should establish internal guidelines about when to

introduce and how to work with value types and executable directives in the

data graph, and drive adoption of newmeasures in your CI/CD pipeline to help

manage the composition errors may result from these cross-cutting concerns

during deployment.

Summary

In this chapter, we covered a variety of best practices for designing schemas

within a federated data graph. We explored what it means to design a schema in

a demand-oriented, abstract way with an eye for expressiveness. We also saw

how nullability and abstract types can help improve the expressiveness and the

usability of a schema when used strategically.

Next, we saw how the @deprecated directive and supporting tooling can help

teams within an enterprise safely evolve schemas and how using both top-level

errors and unions to express a range of possible result states can improve the

Summary 55

error handling experience for clients. Finally, we revisited the importance of

measuring the cost of adding cross-cutting concerns to a federated data graph.

In the next chapter, we’ll move on from focusing exclusively on schema-related

concerns to what best practices for overall data graph administration look like in

an enterprise.

Graph Administration in the

Enterprise

By Michael Watson and Mandi Wise

GraphQL was designed to allow your API to evolve continuously in response

to new product requirements and client developer feedback, and without the

overhead of versioning. In practice, such evolution requires insight into how

your GraphQL API is used so that types, fields, and arguments may be safely

modified without causing breaking changes for clients. With a federated data

graph, extra consideration is needed to ensure when one subgraph changes its

schema that those updates won’t cause unexpected breaking changes for the

other subgraphs that rely on its entities.

A well-managed data graph will help drive adoption and compound the network

effects of the data graph in an enterprise. To realize this potential, there needs

to be an iterative and repeatable process in place for managing and evolving

the federated data graph across teams once the graph has been deployed to

production. That means that each team that owns a subgraph service needs

tooling in place to support its ongoing contributions to the overall graph. These

teams need to be assured that the changes they make won’t break existing

operations sent by clients and that they can evolve their portion of the schema

without breaking the data graph’s composition.

Additionally, new scenarios for data consumption will arise as additional client

teams are onboarded to the graph. As this happens, the right balancemust be

struck between flexibly accommodating these changes, maintaining the integrity

of the data graph, andmanaging access to it. You’ll also want to ensure that

the clients querying the graph identify themselves and that you have some

mechanism for enforcing these usage rules.

As we can see, adopting a federated “One Graph” approach can inspire new lev-

els of collaboration in an enterprise’s development efforts. Having the right tools

and processes in place to support enterprise-scale data graph evolution will

56

Workflows 57

increase the speed at which teams can ship updates to the broader data graph,

and in turn, the user interfaces that power product experiences. Throughout

this chapter, we’ll explore the workflows, developer tooling, observability tools,

and governance practices that have served Apollo’s enterprise customers in the

management and continuous evolution of their data graphs.

Workflows

Teams that work on components of a distributed GraphQL architecture need

workflows that support the iterative evolution of the data graph, both at an

initial conceptual stage and later when shipping changes that will impact the

composition of the overall graph. At Apollo, we have observed and worked with

customers to develop the following best practices for prototyping and deploying

schema changes.

Prototyping Schemas

Whether embarking on an initial consolidation project or iterating subgraph

schemas in an existing federated data graph, teams need a way to prototype

their type definitions with an understanding of how the types and fields in their

portion of the schema will compose into the broader graph. They also need

a way to experiment with referencing and extending entities from other sub-

graphs. These prototyping exercises are the starting point for all schema design

workflows and they are instrumental in planning for the iterative evolution of a

federated data graph.

At Apollo, we have worked with teams that start this schema design process by

handing a blank piece of paper to client developers and asking them to sketch

out the ideal shape of a query response. Once the shape of the query is defined,

it’s used as starting point for rolling out the necessary service changes to support

that query. There may be subsequent edits made to the draft query based on

unavoidable constraints of the existing data graph structure or the underlying

data sources. After some amount of further iteration, the client developers can

test out the new query and the schema update can be deployed.

There are many different variations of this schema design process, but one

consistent theme is that there are unknowns that must be addressed before any

change can be safely implemented in a schema that will be served in production.

At a minimum, teams should be able to discover what is currently available in

the schema beyond the subgraph that they own. This discovery helps teams

leverage existing entities in a data graph, avoid duplication, and help contribute

to a more cohesive model of the enterprise’s data. Further, teams need to

58 Graph Administration in the Enterprise

understand if their proposed changes compose into the overall graph before

investing time in implementation.

To support and enhance our customer’s schema design workflows, the Apollo

solutions team designed the Apollo Workbench VS Code extension. This exten-

sion allows developers to design and test federated schema design by modeling

GraphQL operations and providing feedback about composition errors directly

in VS Code. It also integrates with Apollo Studio’s schema registry so that all

subgraph schemas may be downloaded for a data graph andmodified in a non-

destructive environment. The Apollo Workbench extension may be downloaded

from the VS Code extension marketplace.

Deploying Changes into the Data Graph

Once schema changes are ready to deploy, teams need a workflow for rolling

out the changes to different environments and informing other teams of those

changes. This is where a schema registry becomes essential. A centralized

registry will be the source of truth for the enterprise’s data graph, provides an

overall view of the graph so teammembers can understand how their portion of

the schema fits into the larger picture, allows developers to safely push changes

to that graph, and can integrate with other developer tooling.

With a centralized registry in place, a gateway can reference the composed

schema directly from the registry and schema change events can be used to

drive updates to the configuration of an Apollo Gateway. In turn, referencing a

schema configuration from a registry allows a federated data graph’s schema

to be updated on the fly and without restarting the gateway service to force

recomposition. Service owners can then incorporate schema pushes into their

CI/CD pipelines once the artifact has been deployed and is ready to serve traffic.

Apollo Studio can serve as this centralized registry, and subsequently, unlock

all of the capabilities of managed federation. Managed federation will create

a new gateway configuration every time a schema is pushed to the registry by

one of the subgraphs using the rover subgraph publish command from

the Rover CLI, but only does so when those changes can be composed into the

existing data graph without breaking changes for other subgraphs and clients.

Additionally, managed federation allows teams to create different variants of the

data graph that correspond to the different environments where the graph runs

(such as staging and production). Each variant has its own GraphQL schema,

which means schemas can differ between environments.

https://marketplace.visualstudio.com/items?itemName=apollographql.apollo-workbench
https://www.apollographql.com/docs/federation/managed-federation/overview/
https://www.apollographql.com/docs/rover/

Tooling for Data Graph Contributors 59

Try Out Managed Federation

To enable managed federationmode with Apollo Gateway, you’ll need

to sign up for Apollo Studio to obtain an APOLLO_KEY and then push

your subgraph schemas up to the registry using the Rover CLI. After

adding the APOLLO_KEY as an environment variable, you can remove the

serviceList from the existing ApolloGateway configuration, restart

the gateway service, and your data graph will automatically start in

managedmode, now serving the version of your schema that has been

composed and stored by the Apollo Studio registry.

Ultimately, an enterprise will need to have controls in place to manage data

graph contributions and those controls will live in the schema registry. Each

push of an updated subgraph schema to the registry is an opportunity to per-

form validation that flags breaking changes to the overall data graph. At a

minimum, a schema registry should be capable of determining if an update to a

subgraph’s schema can be safely composed back in, and then upon successful

composition, drive the updated schema to the gateway service.

Tooling for Data Graph Contributors

Whenmultiple teams contribute to a data graph, it’s essential to have standards

in place to ensure everyone can contribute to the graph as effectively as possible.

The schema registry is the central point at which these individual contributions

are collected and validated before incorporation into the overall data graph.

To use a schema registry, some tooling is required to add schema checks and

publications into a team’s existing deployment process.

CI/CD Pipelines for Subgraph Services

When a subgraph schema is published to the registry, Apollo Studio runs com-

position validation to ensure that the proposed change will compose with other

registered subgraph schemas. Upon successful composition, a new gateway

configuration is created. However, if a composition error occurs, then the error

state of the new schema is staged in the registry until the subgraph publishes

an updated version of its schema that may be properly composed into the data

graph.

Ideally, a subgraph’s schema registration should be incorporated into a relevant

CI/CD pipeline to automate this process. Further, the automated schema publish

should happen when the subgraph service is ready to serve traffic, which would

typically be after the service completes deployment and passes a health check.

60 Graph Administration in the Enterprise

In a Kubernetes-based environment, it’s common to publish a schema after the

readiness probe passes. If Apollo Server is used to power the subgraph services,

then you can use the onHealthCheckmethod to implement custom logic to

verify that a service is ready to serve traffic (usually to ensure that downstream

data sources are available). Once the health check passes, a CI/CD pipeline can

register the schema.

Schema Validation

Confirming valid schema composition is only half of the battle when guarding

against breaking changes in production—you’ll also need to ensure that schema

updates won’t break existing operations currently used by clients. Nobody

wants to deal with (or be the cause of) production downtime, and it has very real

financial consequences for enterprises. For a large e-commerce application, a

fewminutes of downtime can have six-figure implications. Within a distributed

GraphQL architecture that favors continual schema evolution, developers work-

ing on subgraph services should feel confident that they can release changes

without doing unintended damage to client applications. For example, even

something as simple as changing an existing field on an Object type from non-

null to nullable can lead to breaking changes for clients that aren’t prepared to

handle a potentially null value.

This is where a schema registry provides evenmore value when combined with

observability tools that collect tracing data on the operations performed against

the schema. These tools allow you to perform analysis on a composed schema

to verify if any proposed changes will affect existing traffic to the API. Schema

validation is the process of performing static analysis of a schema against a

set of known GraphQL operations for a given window of time. The period that

you check against may need to be large if any mobile clients consume the data

graph (because you won’t have as much control over upgrade cycles as with

web-based clients).

Apollo Studio facilitates schema validation via the Rover CLI using rover
subgraph check command. Teams can use this command in their deploy-

ment pipelines to ensure proposed schema changes don’t adversely affect client

traffic. If Apollo Studio detects a potentially dangerous change, then it will dis-

play information in its user interface about what the breaking change is, what

clients are affected (by client name and version number), what operations are

impacted, and the volume of traffic running against those operations. As a result,

schema validation provides a scalable solution that supports safe, incremental

data graph evolution driven by multiple teams.

Tooling for Data Graph Contributors 61

Schema Design

As noted above, Apollo Workbench is an essential tool for developers making

ongoing contributions to the data graph. It was created to help developers

understand data graph composition and execution details during the schema

design phase in a mocked environment, rather than waiting until implementa-

tion time to discover that a schema addition or update doesn’t compose into the

graph as expected.

A typical Apollo Workbench-driven workflow for a developer updating a sub-

graph schema would begin by downloading the current representation of the

entire federated schema from Apollo Studio into VS Code. A particular sub-

graph’s schema can then bemodified and new subgraph schemasmay also be

added to test composition with the overall data graph. Fromwithin their local

environment, developers can easily see what entities may be referenced or ex-

tended from other subgraphs as they work. And when composition errors occur,

they are displayed in the Problems panel of VS Code. Both newly designed and

known operations (pulled from Apollo Studio) may be tested against iterations

of the composed schema with a view of the full query plan directly in the editor.

For more details on optimizing development workflows with Apollo Workbench,

see the GraphQL Summit 2021 keynote or the Apollo Workbench documentation.

https://marketplace.visualstudio.com/items?itemName=apollographql.apollo-workbench
https://youtu.be/XUocF2TLGMk?t=1165
https://apollographql.github.io/apollo-workbench-vscode/

62 Graph Administration in the Enterprise

Tooling for Data Graph Consumers

GraphQL offers a client-centric approach to developing APIs, and this promise

extends beyond designing queries that are purpose-built to meet client devel-

oper needs and drive product experiences. Both Apollo andmembers of the

GraphQL community have created extensive client-side tooling for web and

mobile to expedite development and help teams ship features faster. In turn,

client developers canmaximize the utility of the schema registry by adopting

best practices when sending their requests to the data graph.

Consuming the Data Graph

When an enterprise shifts toward a consolidated data graph, client developers

whomay have previously juggledmultiple GraphQL endpoints or other point-

to-point APIs no longer need to jump through client-side hoops to query all of

the data needed to render a view in an application. That said, with a centralized

schema registry in place, a common set of standards should be established to

structure how clients make requests to the data graph.

At a minimum, there should be basic controls on what operations are executed

against the data graph, and how those operations are structured. Tracing data

becomes far more useful and actionable when clients include their names

and versions as metadata. When using Apollo Client for web or mobile, you

can specify name and version options that will automatically be translated

into header values sent with every request (specifically, the headers are called

apollographql-client-name and apollographql-client-version,
and they may be set manually for other GraphQL clients). Tools such as Apollo

Studio can then use this operation trace metadata to help service developers

conduct more effective schema validation.

In addition to identifying themselves by name and version, clients should use

named operations for each request to the data graph. For example, at Apollo,

we prepend UI_ to the names of all operations sent from the Apollo Studio web

application. Other teams go so far as to add linting rules to check the structure

of client operations as a part of that client’s deployment pipeline too.

While there isn’t a single “best” way to structure operation names, the important

takeaway here is to establish some operation-related standards, communicate

those standards to teams, and then enforce them. Enforcement of these rules

can take place within the Apollo Gateway, but adding runtime logic on a per-

request basis should be approached with caution when rules may be checked

statically in client code as part of the CI/CD process instead. However enforced,

both client awareness and operation names are essential in providing the

necessary visibility in observability tools to support a field deprecation and

https://spec.graphql.org/June2018/#sec-Named-Operation-Definitions

Observability 63

rollover strategy that prevents breaking changes for client developers as the

data graph evolves.

Code Generation

Codegen-related tooling can help facilitate client development for both web and

mobile applications. To support modern, strongly-typed web development, the

GraphQL Code Generator library can be used to generate types for operation

results.

On the iOS side, the Apollo CLI may be used to download the data graph’s

schema and add it to a target’s directory, and then subsequently generate code

as a build step based on the operations saved in .graphql files. For Android,

an Apollo Gradle plugin is available to download the schema and generate

type-safe models and code from operations in .graphql files when built.

Additional Tools for Client Developers

Apollo provides additional tools to help support client development, including

the Apollo Client Devtools extensions for Chrome and Firefox, which includes an

embedded GraphiQL IDE along with query, mutation, and cache inspectors. The

Apollo VS Code extension also supports client development with GraphQL syntax

highlighting, operation autocompletion, performance information, andmore.

For iOS, Apollo Xcode Add-ons provides syntax highlighting for GraphQL query

document files to Xcode.

Observability

As more services are added to a federated data graph and adoption spreads

across client applications, it may grow challenging to reason about how a single

request traverses the graph. As noted in a previous chapter, Apollo Gateway

undertakes a query planning process to optimize for the most time spent in

a single service to reduce the number of network hops for a single request.

Once calculated, the gateway will execute the query plan across the subgraphs

required to fulfill the request. With managed federation and Apollo Studio,

federated traces may be used to provide detailed insights into the GraphQL

layer’s performance and usage.

Federated Traces

With federated tracing enabled (which happens by default when an

APOLLO_KEY variable is present in the gateway’s environment), the gateway

will include an HTTP header of apollo-federation-include-trace: ftv1

https://graphql-code-generator.com/
https://www.apollographql.com/docs/ios/tutorial/tutorial-obtain-schema/#download-your-servers-schema
https://www.apollographql.com/docs/react/development-testing/developer-tooling/#apollo-client-devtools
https://www.apollographql.com/docs/devtools/editor-plugins/
https://github.com/apollographql/xcode-graphql
https://www.apollographql.com/docs/federation/metrics/#gatsby-focus-wrapper
https://www.apollographql.com/docs/federation/metrics/#turning-it-on

64 Graph Administration in the Enterprise

with each request to a subgraph. Each subgraph will then construct its trace

and add this data to the extensions of its response. Apollo Gateway then

constructs the overall trace for the request based on the shape of the query plan.

This process may be visualized as follows:

The gateway will send this tracing data to Apollo Studio where it may be used for

schema checks, tuning query performance, and debugging operation errors:

When Apollo Server is used to power subgraphs, this tracing data is provided

out-of-the-box via the inline trace plugin. Many third-party federation libraries

also expose federated tracing data. Note that not all third-party federation

libraries will necessarily provide field-level tracing data in a response, but the

gateway’s aggregated trace will still show the total time spent in the service even

though the detailed field resolver data won’t be available for that portion of the

query plan.

https://www.apollographql.com/docs/federation/metrics/#how-traces-are-constructed-and-aggregated
https://www.apollographql.com/docs/apollo-server/api/plugin/inline-trace/#using-the-plugin
https://www.apollographql.com/docs/federation/other-servers/

Observability 65

Integration with Other Observability Tools

Many enterprises use additional observability tools to monitor application per-

formance and these tools may also be integrated with a federated data graph.

Apollo Studio connects directly with DataDog andmany other integrations are

possible too, either through a custom Apollo Server plugin in the gateway, a cus-

tom RemoteGraphQLDataSource, or by carrying specific headers throughout a

request.

For example, when using AWS CloudWatch an aws-request-id header must is

included with the request, but by default, Apollo Server’s usage reporting plugin

excludes all headers. However, the usage reporting plugin can be configured to

include this header in its traces as follows:

ApolloServerPluginUsageReporting({
sendHeaders: { onlyNames: ['aws-request-id'] }

})

When tracing data is viewed in Apollo Studio, you will now have the aws-
request-id available to help diagnose service-level performance issues in

CloudWatch in relation to the federated traces.

As another example, your teammay need to understand the relationship be-

tween an incoming request from a gateway to a subgraph service and the orig-

inal operation name of the request to the gateway. For this case, a custom

RemoteGraphQLDataSource can be used to include the operation name and

a hashed representation of the original query can be used as the name of the

query to the subgraph:

https://www.apollographql.com/docs/studio/datadog-integration/
https://www.apollographql.com/docs/apollo-server/api/plugin/usage-reporting/

66 Graph Administration in the Enterprise

class OperationNameForwarding extends RemoteGraphQLDataSource {
willSendRequest({ context: { operationName }, request }) {

if (request?.variables.representations) {
let key =
JSON.stringify(request.variables.representations);

let keyHash =
createHash('sha512').update(key).digest('hex');

let newQuery = request.query.replace(
'query($representations:',
`query ${operationName}_${keyHash}($representations:`

);
request.query = newQuery;

}
}

}

These are just a few examples of what’s possible for application performance

monitoring of a federated data graph with Apollo Studio and additional observ-

ability tools. A member of the Apollo solutions team can work with you to design

custom observability integrations for your enterprise.

Governance

Initial GraphQL adoption often emerges either fromwithin a single team or a

small number of teams, and at that scale, managing governance concerns may

be handled on an informal basis. However, the move toward a consolidated data

graph requires a more intentional approach. Given the evolutionary nature of a

federated data graph, strong governance practices are needed to help maintain

its integrity while simultaneously driving its adoption across an enterprise.

The establishment of a data governance group is an important factor in the

success of any consolidation project. This groupmay be thought of as the

“GraphQL Center of Excellence” within an enterprise and it should represent a

cross-section of key data graph stakeholders. Ultimately, the governance of a

federated data graph is largely concerned with empowering the people who

will contribute to and consume it with processes that will help them operate

as good citizens of the graph. Once the data graph governance group has been

established, the work largely focuses on setting standards that help maintain

the quality of the data graph, facilitate its continuous evolution, support its

operation, and enforce standards for client usage.

Governance 67

Establishing the Data Graph Governance Group

To set enterprise-wide standards for the graph, a data graph governance group

should be established. This group acts as a cross-team, collaborative governing

body for the data graph. It also establishes best practices related to data graph

maintenance and administration and provides ongoing education for graph

contributors and consumers.

At a minimum, the governance group should consist of one representative from

each of these stakeholder categories (though ideally, each subgraph service and

client teamwill have representation):

Stakeholder Role Ownership

Executive

Sponsor

Provides approval to help ensure

the prioritization of the project

Owns resourcing for the overall

initiative

Graph Champion Is the driving force behind the

initial consolidation project and is

instrumental in obtaining

executive sponsorship

Owns internal training and

onboarding to the data graph

Subgraph Lead Represents a subgraph service

(usually the team lead andmay

also be a Graph Champion)

Owns service boundary resources

Product Manager Helps shape schema design within

service boundaries

Owns the representation of the

service boundary in the data graph

DevOps

Representative

Ensures consistent CI/CD pipelines

for subgraphs

Owns CI/CD pipeline requirements

and underlying infrastructure and

tooling

Client Developer

Advocate

Advocates for client consumption

patterns in relation to schema

design and evolution

(representation from every client

team is not required, though would

be helpful)

Owns data graph consumer tooling

and SDKs (partners with a relevant

Product Manager)

Ideally, the data graph governance group should be formed at the outset of a

consolidation project. If a similar GraphQL Center of Excellence already exists

with an enterprise, its composition should be evaluated to ensure that the key

data graph stakeholders that will be involved in the consolidation project have

adequate representation within the group.

An appropriate meeting cadence for this governance group will vary by orga-

nization needs and the complexity of the consolidation work at hand, though

68 Graph Administration in the Enterprise

in most cases, the groupmembers will likely need tomeet on amore frequent

basis at the outset of a consolidation project. Once a federated data graph is

running in production, a regular meeting cadence should still be maintained to

help support graph evolution as well as expanding its adoption across teams in

the enterprise.

Setting Standards for Data Graph Management

Once established, the data graph governance group is responsible for setting

best practices related to the enterprise’s consolidated graph, communicating

and enforcing those practices, and evolving them as needed over time. Gener-

ally, these concerns may be categorized into three main areas: Graph Integrity,

Graph Operation, and Graph Usage. Suggested practices for each area are out-

lined below.

Graph Integrity

Reconciling naming conventions and how entities are conceptualized, refer-

enced, and extended across domains can be a challenging aspect of an initial

consolidation project. These concerns will require ongoing attention afterward

too as the data graph evolves and new subgraph services are incorporated into

it. Documenting naming conventions, guidelines for entity and value type up-

dates, as well as type and field migration workflows helps service owners make

informed decisions about how they can evolve their portion of the schema. The

governance group should also formalize a review process for proposed schema

changes and an architectural review process for adding new subgraph services

before they are incorporated into the broader data graph.

Once changes are made to the data graph, teams that contribute to and con-

sume the API must be informed. Regular rhythms and processes should be

established for synchronously and asynchronously communicating schema

updates to internal teams, especially when rolling over deprecated fields. In

addition, Apollo Studio can be configured to post schema change notifications

directly in a Slack channel, and it also exposes a schema change webhook for

general use with other services and tools.

Graph Operation

Having the right observability tools in place is a key factor in maintaining

smooth graph operations andminimizing mean time to recovery when some-

thing unexpected happens. As previously discussed, federated traces provide

insight into API usage at the field, operation, and client levels in Apollo Studio

and this data can be used to tune performance, debug errors, and support a safe

Governance 69

rollover strategy for deprecated fields (and performance reports and alerts can

also be pushed directly to a Slack channel from Apollo Studio).

The governance group should proactively establish performance best practices

that support data graph operation. For example, caching may happen at various

levels in the stack—from the normalized cache in Apollo Client, to Automatic Per-

sisted Queries that support edge caching with CDNs, to full response caching at

the gateway or subgraph level—and service owners and client teams alike must

be aware of what the standard practices are within the graph. Similar guidelines

may be provided for areas such as using data loaders to batch requests to under-

lying data sources, providing minimal unit test coverage for subgraph resolvers,

and running automated performance tests for known operations.

Graph Usage

As previously discussed, it’s a best practice for clients to identify themselves

by name and version before querying data from the graph, and clients should

also assign names to all of the operations they send to the API. Ideally, these

operation names are defined using a shared naming scheme, so it will be the

role of the data graph governance group to set, communicate, and enforce these

naming standards.

Additionally, the governance groupmay wish to set standards for using query

variables instead of literals as operation arguments. This measure will help

minimize operation cardinality and take advantage of some of Apollo Studio’s

reporting optimizations in the gateway. And to guard against potentially abusive

operations, the governance groupmay also put appropriate mechanisms in

place to limit query depth, breadth, and overall cost.

Onboarding and Supporting Teams

When it comes to driving adoption of the data graph in an enterprise, one of the

most important functions a governance group can serve is supporting teams

as they are onboarded to the data graph, both as contributors and consumers.

Similarly, the data graph governance group can also help support ongoing

education through the establishment of an enterprise-wide “Community of

Practice” for the unified data graph, and GraphQL in general.

For an extensive list of links to additional resources to help support internal

GraphQL training at your enterprise, please see Appendix B.

70 Graph Administration in the Enterprise

Summary

In this chapter, we covered several important topics related to federated data

graph administration. We first described workflows for prototyping schema

changes and howmanaged federation allows subgraph service owners to deploy

updates without the fear of introducing breaking changes to graph composition

or existing client operations. We then explored tooling that supports both data

graph contributors and consumers.

We also saw how federated traces and observability tools assist with monitoring

data graph performance and evolution. And lastly, we discussed the importance

of establishing a data graph governance group based on a representative cross-

section of teammembers, and how the work of this group helps maintain the

integrity of the graph, support its continuous evolution, and drive adoption by

helping onboard new teams to the graph and supporting GraphQL education

across the enterprise.

Appendix A: Federation Case

Studies

The following is curated list of case studies from enterprises that have adopted

a federated approach to GraphQL consolidation with the support of various

elements of the Apollo platform.

Adobe

This post details how Adobe Experience Platform engineering uses GraphQL with

over 40 internal contributors across 40 API endpoints at Adobe to improve their

agility and velocity:

GraphQL: Making Sense of Enterprise Microservices for the UI

Netflix

This series of blog posts outlines how Netflix uses a federated approach to

GraphQL to power its Studio API:

How Netflix Scales its API with GraphQL Federation (Part 1)

How Netflix Scales its API with GraphQL Federation (Part 2)

RS Components

This series of blog posts outlines how RS Components adopted a transitionary

architecture to facilitate its move to a federated GraphQL API, and with an eye

for how to to scale its efforts in the future:

Schema Services: Transitioning Towards a Federated Architecture

The Evolution of GraphQL at Scale

71

https://medium.com/adobetech/graphql-making-sense-of-enterprise-microservices-for-the-ui-46fc8f5a5301
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2
https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-2-bbe71aaec44a
https://www.apollographql.com/blog/schema-services-transitioning-towards-a-federated-graphql-architecture/
https://www.apollographql.com/blog/the-evolution-of-graphql-at-scale/

72 Appendix A: Federation Case Studies

StockX

From scaling to developer velocity to documentation, this blog post outlines

what key insights the StockX team had in their journey adopting federation:

9 Lessons From a Year of Apollo Federation

Walmart

This post outlines how the Walmart Customer Experience teammigrated away

from REST-based orchestrators to use Apollo Federation for enhanced perfor-

mance and developer ergonomics:

Federated GraphQL@Walmart

https://www.apollographql.com/blog/9-lessons-from-a-year-of-apollo-federation/
https://medium.com/walmartglobaltech/federated-graphql-walmart-bfc85c2553de

Appendix B: GraphQL and Apollo

Learning Resources

In addition to the content in this guide, the following resources will be helpful for

teams adopting GraphQL and Apollo Federation:

GraphQL

• Learn GraphQL with Apollo

• Learn - graphql.org

• GraphQL Specification

• Principled GraphQL

Apollo Client

Android

• Apollo Client Android Docs

• Tutorial - Apollo Android SDK

iOS

• Apollo Client iOS Docs

• Tutorial - Apollo iOS SDK

React/JS

• Apollo Client React/JS Docs

• Apollo Client React/JS Roadmap

• Migrating Your React App to Apollo Client 3 (video)

• Configuring the Cache

• Demystifying Cache Normalization

73

https://odyssey.apollographql.com/
https://graphql.org/learn/
http://spec.graphql.org/
https://principledgraphql.com/
https://www.apollographql.com/docs/android/
https://www.apollographql.com/docs/android/tutorial/00-introduction/
https://www.apollographql.com/docs/ios/
https://www.apollographql.com/docs/ios/tutorial/tutorial-introduction/
https://www.apollographql.com/docs/react/
https://github.com/apollographql/apollo-client/blob/main/ROADMAP.md
https://www.youtube.com/watch?v=dlKzlksOUtU
https://www.apollographql.com/docs/react/caching/cache-configuration/
https://www.apollographql.com/blog/demystifying-cache-normalization/

74 Appendix B: GraphQL and Apollo Learning Resources

• Local State Management with Reactive Variables

Apollo Server

• Apollo Server Docs

• Apollo Server Roadmap

Apollo Federation

• Apollo Federation Docs

• The Architecture of Federation (video)

• Migrating from Schema Stitching

• Third-party Libraries that Support Apollo Federation

Apollo Studio

• Apollo Studio Docs

• Managed Federation Overview

• Sending Metrics to Apollo Studio

• Schema Checks

• Rover CLI Docs

https://www.apollographql.com/blog/local-state-management-with-reactive-variables/
https://www.apollographql.com/docs/apollo-server/
https://github.com/apollographql/apollo-server/blob/main/ROADMAP.md
https://www.apollographql.com/docs/federation/
https://www.youtube.com/watch?v=LKQKn1oFXJU
https://www.apollographql.com/docs/federation/migrating-from-stitching/
https://www.apollographql.com/docs/federation/other-servers/
https://www.apollographql.com/docs/studio/
https://www.apollographql.com/docs/federation/managed-federation/overview/
https://www.apollographql.com/docs/studio/setup-analytics/
https://www.apollographql.com/docs/studio/schema-checks/
https://www.apollographql.com/docs/rover/

	The Team
	Preface
	Who Should Read this Guide
	What You'll Learn from this Guide
	How to Contact Us

	Moving Toward GraphQL Consolidation
	Why Consolidate Your Data Graph?
	What Does a Consolidated Data Graph Look Like?
	When to Consolidate Your Data Graph
	Summary

	Graph Champions in the Enterprise
	The Graph Champion and Graph Administration
	Delivering Organizational Excellence as a Graph Champion
	Education To Support Organizational Change
	Summary

	Consolidated Architectures with Federation
	A Better Way to Scale Distributed GraphQL Architectures
	Subgraphs and the Gateway
	Connecting the Data Graph with Entities
	Defining Shared Types and Custom Directives
	Managed Federation
	Summary

	Federated Schema Design Best Practices
	Best Practice #1: Design Schemas in a Demand-Oriented, Abstract Way
	Best Practice #2: Prioritize Schema Expressiveness
	Best Practice #3: Make Intentional Choices About Nullability
	Best Practice #4: Use Abstract Type Judiciously
	Best Practice #5: Leverage SDL and Tooling to Manage Deprecations
	Best Practice #6: Handle Errors in a Client-Friendly Way
	Best Practice #7: Manage Cross-Cutting Concerns Carefully
	Summary

	Graph Administration in the Enterprise
	Workflows
	Tooling for Data Graph Contributors
	Tooling for Data Graph Consumers
	Observability
	Governance
	Summary

	Appendix A: Federation Case Studies
	Appendix B: GraphQL and Apollo Learning Resources

